About the Project

.2021世界杯投注_『wn4.com_』世界杯挣钱机遇_w6n2c9o_2022年12月2日21时22分29秒_f7zjzd5rf_gov_hk

AdvancedHelp

(0.009 seconds)

11—20 of 850 matching pages

11: 34.4 Definition: 6 j Symbol
34.4.1 { j 1 j 2 j 3 l 1 l 2 l 3 } = m r m s ( 1 ) l 1 + m 1 + l 2 + m 2 + l 3 + m 3 ( j 1 j 2 j 3 m 1 m 2 m 3 ) ( j 1 l 2 l 3 m 1 m 2 m 3 ) ( l 1 j 2 l 3 m 1 m 2 m 3 ) ( l 1 l 2 j 3 m 1 m 2 m 3 ) ,
Except in degenerate cases the combination of the triangle inequalities for the four 3 j symbols in (34.4.1) is equivalent to the existence of a tetrahedron (possibly degenerate) with edges of lengths j 1 , j 2 , j 3 , l 1 , l 2 , l 3 ; see Figure 34.4.1. …
34.4.2 { j 1 j 2 j 3 l 1 l 2 l 3 } = Δ ( j 1 j 2 j 3 ) Δ ( j 1 l 2 l 3 ) Δ ( l 1 j 2 l 3 ) Δ ( l 1 l 2 j 3 ) s ( 1 ) s ( s + 1 ) ! ( s j 1 j 2 j 3 ) ! ( s j 1 l 2 l 3 ) ! ( s l 1 j 2 l 3 ) ! ( s l 1 l 2 j 3 ) ! 1 ( j 1 + j 2 + l 1 + l 2 s ) ! ( j 2 + j 3 + l 2 + l 3 s ) ! ( j 3 + j 1 + l 3 + l 1 s ) ! ,
where F 3 4 is defined as in §16.2. For alternative expressions for the 6 j symbol, written either as a finite sum or as other terminating generalized hypergeometric series F 3 4 of unit argument, see Varshalovich et al. (1988, §§9.2.1, 9.2.3).
12: 1.3 Determinants, Linear Operators, and Spectral Expansions
For real-valued a j k , …for every distinct pair of j , k , or when one of the factors k = 1 n a j k 2 vanishes. … where ω 1 , ω 2 , , ω n are the n th roots of unity (1.11.21). … Let a j , k be defined for all integer values of j and k , and 𝐷 n [ a j , k ] denote the ( 2 n + 1 ) × ( 2 n + 1 ) determinant … The spectrum of such self-adjoint operators consists of their eigenvalues, λ i , i = 1 , 2 , , n , and all λ i . …
13: 3.4 Differentiation
The B k n are the differentiated Lagrangian interpolation coefficients: … where ξ 0 and ξ 1 I . For the values of n 0 and n 1 used in the formulas below … For partial derivatives we use the notation u t , s = u ( x 0 + t h , y 0 + s h ) . …
14: 34.3 Basic Properties: 3 j Symbol
When any one of j 1 , j 2 , j 3 is equal to 0 , 1 2 , or 1 , the 3 j symbol has a simple algebraic form. …For these and other results, and also cases in which any one of j 1 , j 2 , j 3 is 3 2 or 2 , see Edmonds (1974, pp. 125–127). … Even permutations of columns of a 3 j symbol leave it unchanged; odd permutations of columns produce a phase factor ( 1 ) j 1 + j 2 + j 3 , for example,
34.3.8 ( j 1 j 2 j 3 m 1 m 2 m 3 ) = ( j 2 j 3 j 1 m 2 m 3 m 1 ) = ( j 3 j 1 j 2 m 3 m 1 m 2 ) ,
For the polynomials P l see §18.3, and for the function Y l , m see §14.30. …
15: 19.29 Reduction of General Elliptic Integrals
The Cauchy principal value is taken when U α 5 2 or Q α 5 2 is real and negative. … If both square roots in (19.29.22) are 0, then the indeterminacy in the two preceding equations can be removed by using (19.27.8) to evaluate the integral as R G ( a 1 b 2 , a 2 b 1 , 0 ) multiplied either by 2 / ( b 1 b 2 ) or by 2 / ( a 1 a 2 ) in the cases of (19.29.20) or (19.29.21), respectively. … Next, for j = 1 , 2 , define Q j ( t ) = f j + g j t + h j t 2 , and assume both Q ’s are positive for y < t < x . …If Q 1 ( t ) = ( a 1 + b 1 t ) ( a 2 + b 2 t ) , where both linear factors are positive for y < t < x , and Q 2 ( t ) = f 2 + g 2 t + h 2 t 2 , then (19.29.25) is modified so that …In the cubic case, in which a 2 = 1 , b 2 = 0 , (19.29.26) reduces further to …
16: 5.10 Continued Fractions
5.10.1 Ln Γ ( z ) + z ( z 1 2 ) ln z 1 2 ln ( 2 π ) = a 0 z + a 1 z + a 2 z + a 3 z + a 4 z + a 5 z + ,
where
a 0 = 1 12 ,
a 2 = 53 210 ,
For exact values of a 7 to a 11 and 40S values of a 0 to a 40 , see Char (1980). …
17: 27.2 Functions
where p 1 , p 2 , , p ν ( n ) are the distinct prime factors of n , each exponent a r is positive, and ν ( n ) is the number of distinct primes dividing n . … It is the special case k = 2 of the function d k ( n ) that counts the number of ways of expressing n as the product of k factors, with the order of factors taken into account. …Note that σ 0 ( n ) = d ( n ) . … In the following examples, a 1 , , a ν ( n ) are the exponents in the factorization of n in (27.2.1). … Table 27.2.1 lists the first 100 prime numbers p n . …
18: 23.9 Laurent and Other Power Series
Let z 0 ( 0 ) be the nearest lattice point to the origin, and define …Explicit coefficients c n in terms of c 2 and c 3 are given up to c 19 in Abramowitz and Stegun (1964, p. 636). For j = 1 , 2 , 3 , and with e j as in §23.3(i), … where a 0 , 0 = 1 , a m , n = 0 if either m or n < 0 , and …For a m , n with m = 0 , 1 , , 12 and n = 0 , 1 , , 8 , see Abramowitz and Stegun (1964, p. 637).
19: 26.16 Multiset Permutations
Let S = { 1 a 1 , 2 a 2 , , n a n } be the multiset that has a j copies of j , 1 j n . 𝔖 S denotes the set of permutations of S for all distinct orderings of the a 1 + a 2 + + a n integers. The number of elements in 𝔖 S is the multinomial coefficient (§26.4) ( a 1 + a 2 + + a n a 1 , a 2 , , a n ) . … The q -multinomial coefficient is defined in terms of Gaussian polynomials (§26.9(ii)) by …and again with S = { 1 a 1 , 2 a 2 , , n a n } we have …
20: 34.2 Definition: 3 j Symbol
The quantities j 1 , j 2 , j 3 in the 3 j symbol are called angular momenta. …where r , s , t is any permutation of 1 , 2 , 3 . The corresponding projective quantum numbers m 1 , m 2 , m 3 are given by … where F 2 3 is defined as in §16.2. For alternative expressions for the 3 j symbol, written either as a finite sum or as other terminating generalized hypergeometric series F 2 3 of unit argument, see Varshalovich et al. (1988, §§8.21, 8.24–8.26).