§23.9 Laurent and Other Power Series
Let
be the nearest lattice point to the origin, and define
23.9.1
.

Then
23.9.2
,

23.9.3
.

Here
23.9.4
23.9.5
.

Explicit coefficients
in terms of
and
are given up to
in Abramowitz and Stegun (1964, p. 636).
For
, and with
as in §23.3(i),
23.9.6
as
. For the next four terms see
Abramowitz and Stegun (1964, (18.5.56)). Also,
Abramowitz and Stegun (1964, (18.5.25)) supplies the first 22 terms in the
reverted form of (23.9.2) as
.
For ![]()
23.9.7
where
,
if either
or
, and
23.9.8
For
with
and
, see
Abramowitz and Stegun (1964, p. 637).

