23.8 Trigonometric Series and Products23.10 Addition Theorems and Other Identities

§23.9 Laurent and Other Power Series

Let z_{0}(\neq 0) be the nearest lattice point to the origin, and define

23.9.1c_{n}=(2n-1)\sum _{{w\in\mathbb{L}\setminus\{ 0\}}}w^{{-2n}},n=2,3,4,\dots.

Then

23.9.2\mathop{\wp\/}\nolimits\!\left(z\right)=\frac{1}{z^{2}}+\sum _{{n=2}}^{\infty}c_{n}z^{{2n-2}},0<|z|<|z_{0}|,
23.9.3\mathop{\zeta\/}\nolimits\!\left(z\right)=\frac{1}{z}-\sum _{{n=2}}^{\infty}\frac{c_{n}}{2n-1}z^{{2n-1}},0<|z|<|z_{0}|.

Here

23.9.4
c_{2}=\frac{1}{20}g_{2},
c_{3}=\frac{1}{28}g_{3},
23.9.5c_{n}=\frac{3}{(2n+1)(n-3)}\sum _{{m=2}}^{{n-2}}c_{m}c_{{n-m}},n\geq 4.

Explicit coefficients c_{n} in terms of c_{2} and c_{3} are given up to c_{{19}} in Abramowitz and Stegun (1964, p. 636).

For j=1,2,3, and with e_{j} as in §23.3(i),

23.9.6\mathop{\wp\/}\nolimits\!\left(\omega _{j}+t\right)=e_{j}+(3e_{j}^{2}-5c_{2})t^{2}+(10c_{2}e_{j}+21c_{3})t^{4}+(7c_{2}e_{j}^{2}+21c_{3}e_{j}+5c_{2}^{2})t^{6}+\mathop{O\/}\nolimits\!\left(t^{8}\right),

as t\to 0. For the next four terms see Abramowitz and Stegun (1964, (18.5.56)). Also, Abramowitz and Stegun (1964, (18.5.25)) supplies the first 22 terms in the reverted form of (23.9.2) as 1/\mathop{\wp\/}\nolimits\!\left(z\right)\to 0.

For z\in\Complex

23.9.7\mathop{\sigma\/}\nolimits\!\left(z\right)=\sum _{{m,n=0}}^{\infty}a_{{m,n}}(10c_{2})^{m}(56c_{3})^{n}\frac{z^{{4m+6n+1}}}{(4m+6n+1)!},

where a_{{0,0}}=1, a_{{m,n}}=0 if either m or n<0, and

23.9.8a_{{m,n}}=3(m+1)a_{{m+1,n-1}}+\tfrac{16}{3}(n+1)a_{{m-2,n+1}}-\tfrac{1}{3}(2m+3n-1)(4m+6n-1)a_{{m-1,n}}.

For a_{{m,n}} with m=0,1,\dots,12 and n=0,1,\dots,8, see Abramowitz and Stegun (1964, p. 637).