About the Project

.体育推单 摩登4『世界杯佣金分红55%,咨询专员:@ky975』.wua.k2q1w9-eoiyaq2o2

AdvancedHelp

(0.003 seconds)

21—30 of 521 matching pages

21: Bibliography F
  • B. R. Fabijonas (2004) Algorithm 838: Airy functions. ACM Trans. Math. Software 30 (4), pp. 491–501.
  • B. R. Fabijonas and F. W. J. Olver (1999) On the reversion of an asymptotic expansion and the zeros of the Airy functions. SIAM Rev. 41 (4), pp. 762–773.
  • C. Ferreira, J. L. López, and E. P. Sinusía (2013b) The second Appell function for one large variable. Mediterr. J. Math. 10 (4), pp. 1853–1865.
  • H. E. Fettis (1970) On the reciprocal modulus relation for elliptic integrals. SIAM J. Math. Anal. 1 (4), pp. 524–526.
  • C. Fröberg (1955) Numerical treatment of Coulomb wave functions. Rev. Mod. Phys. 27 (4), pp. 399–411.
  • 22: 4.17 Special Values and Limits
    Table 4.17.1: Trigonometric functions: values at multiples of 1 12 π .
    θ sin θ cos θ tan θ csc θ sec θ cot θ
    π / 12 1 4 2 ( 3 1 ) 1 4 2 ( 3 + 1 ) 2 3 2 ( 3 + 1 ) 2 ( 3 1 ) 2 + 3
    π / 4 1 2 2 1 2 2 1 2 2 1
    5 π / 12 1 4 2 ( 3 + 1 ) 1 4 2 ( 3 1 ) 2 + 3 2 ( 3 1 ) 2 ( 3 + 1 ) 2 3
    7 π / 12 1 4 2 ( 3 + 1 ) 1 4 2 ( 3 1 ) ( 2 + 3 ) 2 ( 3 1 ) 2 ( 3 + 1 ) ( 2 3 )
    11 π / 12 1 4 2 ( 3 1 ) 1 4 2 ( 3 + 1 ) ( 2 3 ) 2 ( 3 + 1 ) 2 ( 3 1 ) ( 2 + 3 )
    23: 8.21 Generalized Sine and Cosine Integrals
    Furthermore, si ( a , z ) and ci ( a , z ) are entire functions of a , and Si ( a , z ) and Ci ( a , z ) are meromorphic functions of a with simple poles at a = 1 , 3 , 5 , and a = 0 , 2 , 4 , , respectively. … When ph z = 0 (and when a 1 , 3 , 5 , , in the case of Si ( a , z ) , or a 0 , 2 , 4 , , in the case of Ci ( a , z ) ) the principal values of si ( a , z ) , ci ( a , z ) , Si ( a , z ) , and Ci ( a , z ) are defined by (8.21.1) and (8.21.2) with the incomplete gamma functions assuming their principal values (§8.2(i)). …
    8.21.9 Ci ( a , z ) = Γ ( a ) cos ( 1 2 π a ) ci ( a , z ) , a 0 , 2 , 4 , .
    8.21.13 Ci ( a , ) = Γ ( a ) cos ( 1 2 π a ) , a 0 , 2 , 4 , .
    8.21.15 Ci ( a , z ) = z a k = 0 ( 1 ) k z 2 k ( 2 k + a ) ( 2 k ) ! , a 0 , 2 , 4 , .
    24: 14.4 Graphics
    See accompanying text
    Figure 14.4.1: 𝖯 ν 0 ( x ) , ν = 0 , 1 2 , 1 , 2 , 4 . Magnify
    See accompanying text
    Figure 14.4.2: 𝖰 ν 0 ( x ) , ν = 0 , 1 2 , 1 , 2 , 4 . Magnify
    See accompanying text
    Figure 14.4.3: 𝖯 ν 1 / 2 ( x ) , ν = 0 , 1 2 , 1 , 2 , 4 . Magnify
    See accompanying text
    Figure 14.4.24: 𝑸 0 μ ( x ) , μ = 0 , 2 , 4 , 8 . Magnify
    See accompanying text
    Figure 14.4.28: 𝑸 1 μ ( x ) , μ = 0 , 2 , 4 , 8 . Magnify
    25: 19.38 Approximations
    Minimax polynomial approximations (§3.11(i)) for K ( k ) and E ( k ) in terms of m = k 2 with 0 m < 1 can be found in Abramowitz and Stegun (1964, §17.3) with maximum absolute errors ranging from 4×10⁻⁵ to 2×10⁻⁸. Approximations of the same type for K ( k ) and E ( k ) for 0 < k 1 are given in Cody (1965a) with maximum absolute errors ranging from 4×10⁻⁵ to 4×10⁻¹⁸. …
    26: 29.7 Asymptotic Expansions
    29.7.4 τ 1 = p 2 6 ( ( 1 + k 2 ) 2 ( p 2 + 3 ) 4 k 2 ( p 2 + 5 ) ) .
    29.7.6 τ 2 = 1 2 10 ( 1 + k 2 ) ( 1 k 2 ) 2 ( 5 p 4 + 34 p 2 + 9 ) ,
    29.7.7 τ 3 = p 2 14 ( ( 1 + k 2 ) 4 ( 33 p 4 + 410 p 2 + 405 ) 24 k 2 ( 1 + k 2 ) 2 ( 7 p 4 + 90 p 2 + 95 ) + 16 k 4 ( 9 p 4 + 130 p 2 + 173 ) ) ,
    29.7.8 τ 4 = 1 2 16 ( ( 1 + k 2 ) 5 ( 63 p 6 + 1260 p 4 + 2943 p 2 + 486 ) 8 k 2 ( 1 + k 2 ) 3 ( 49 p 6 + 1010 p 4 + 2493 p 2 + 432 ) + 16 k 4 ( 1 + k 2 ) ( 35 p 6 + 760 p 4 + 2043 p 2 + 378 ) ) .
    27: 4.24 Inverse Trigonometric Functions: Further Properties
    4.24.1 arcsin z = z + 1 2 z 3 3 + 1 3 2 4 z 5 5 + 1 3 5 2 4 6 z 7 7 + , | z | 1 .
    4.24.5 arctan z = z z 2 + 1 ( 1 + 2 3 z 2 1 + z 2 + 2 4 3 5 ( z 2 1 + z 2 ) 2 + ) , ( z 2 ) > 1 2 ,
    28: 3.4 Differentiation
    B 1 4 = 1 6 ( 4 8 t 3 t 2 + 4 t 3 ) ,
    B 1 4 = 1 6 ( 4 + 8 t 3 t 2 4 t 3 ) ,
    B 0 5 = 1 12 ( 4 + 30 t 15 t 2 12 t 3 + 5 t 4 ) ,
    B 3 5 = 1 120 ( 4 15 t 2 + 5 t 4 ) .
    For additional formulas involving values of 2 u and 4 u on square, triangular, and cubic grids, see Collatz (1960, Table VI, pp. 542–546). …
    29: 26.2 Basic Definitions
    If, for example, a permutation of the integers 1 through 6 is denoted by 256413 , then the cycles are ( 1 , 2 , 5 ) , ( 3 , 6 ) , and ( 4 ) . …The function σ also interchanges 3 and 6, and sends 4 to itself. … As an example, { 1 , 3 , 4 } , { 2 , 6 } , { 5 } is a partition of { 1 , 2 , 3 , 4 , 5 , 6 } . … As an example, { 1 , 1 , 1 , 2 , 4 , 4 } is a partition of 13. … The example { 1 , 1 , 1 , 2 , 4 , 4 } has six parts, three of which equal 1. …
    30: 27.15 Chinese Remainder Theorem
    Choose four relatively prime moduli m 1 , m 2 , m 3 , and m 4 of five digits each, for example 2 16 3 , 2 16 1 , 2 16 + 1 , and 2 16 + 3 . …By the Chinese remainder theorem each integer in the data can be uniquely represented by its residues (mod m 1 ), (mod m 2 ), (mod m 3 ), and (mod m 4 ), respectively. Because each residue has no more than five digits, the arithmetic can be performed efficiently on these residues with respect to each of the moduli, yielding answers a 1 ( mod m 1 ) , a 2 ( mod m 2 ) , a 3 ( mod m 3 ) , and a 4 ( mod m 4 ) , where each a j has no more than five digits. …