About the Project

.世界杯4强中锋『网址:68707.vip』世界杯2019足球决赛.b5p6v3-mw8keu

AdvancedHelp

(0.002 seconds)

21—30 of 520 matching pages

21: 20.7 Identities
20.7.5 θ 3 4 ( 0 , q ) = θ 2 4 ( 0 , q ) + θ 4 4 ( 0 , q ) .
20.7.9 θ 4 2 ( 0 , q ) θ 4 ( w + z , q ) θ 4 ( w z , q ) = θ 3 2 ( w , q ) θ 3 2 ( z , q ) θ 2 2 ( w , q ) θ 2 2 ( z , q ) .
Also, in further development along the lines of the notations of Neville (§20.1) and of Glaisher (§22.2), the identities (20.7.6)–(20.7.9) have been recast in a more symmetric manner with respect to suffices 2 , 3 , 4 . … See also Carlson (2011, §§1 and 4). …
20.7.24 θ 4 ( 4 z | 4 τ ) = B θ 4 ( z | τ ) θ 4 ( 1 4 π z | τ ) θ 4 ( 1 4 π + z | τ ) θ 3 ( z | τ ) .
22: Errata
Version 1.0.25 (December 15, 2019)
  • Equations (22.9.8), (22.9.9) and (22.9.10)
    22.9.8 s 1 , 3 ( 4 ) s 2 , 3 ( 4 ) + s 2 , 3 ( 4 ) s 3 , 3 ( 4 ) + s 3 , 3 ( 4 ) s 1 , 3 ( 4 ) = κ 2 1 k 2
    22.9.9 c 1 , 3 ( 4 ) c 2 , 3 ( 4 ) + c 2 , 3 ( 4 ) c 3 , 3 ( 4 ) + c 3 , 3 ( 4 ) c 1 , 3 ( 4 ) = κ ( κ + 2 ) ( 1 + κ ) 2
    22.9.10 d 1 , 3 ( 2 ) d 2 , 3 ( 2 ) + d 2 , 3 ( 2 ) d 3 , 3 ( 2 ) + d 3 , 3 ( 2 ) d 1 , 3 ( 2 ) = d 1 , 3 ( 4 ) d 2 , 3 ( 4 ) + d 2 , 3 ( 4 ) d 3 , 3 ( 4 ) + d 3 , 3 ( 4 ) d 1 , 3 ( 4 ) = κ ( κ + 2 )

    Originally all the functions s m , p ( 4 ) , c m , p ( 4 ) , d m , p ( 2 ) and d m , p ( 4 ) in Equations (22.9.8), (22.9.9) and (22.9.10) were written incorrectly with p = 2 . These functions have been corrected so that they are written with p = 3 . In the sentence just below (22.9.10), the expression s m , 2 ( 4 ) s n , 2 ( 4 ) has been corrected to read s m , p ( 4 ) s n , p ( 4 ) .

    Reported by Juan Miguel Nieto on 2019-11-07

  • Version 1.0.24 (September 15, 2019)
    Version 1.0.23 (June 15, 2019)
    Version 1.0.22 (March 15, 2019)
    23: 12.4 Power-Series Expansions
    12.4.3 u 1 ( a , z ) = e 1 4 z 2 ( 1 + ( a + 1 2 ) z 2 2 ! + ( a + 1 2 ) ( a + 5 2 ) z 4 4 ! + ) ,
    12.4.4 u 2 ( a , z ) = e 1 4 z 2 ( z + ( a + 3 2 ) z 3 3 ! + ( a + 3 2 ) ( a + 7 2 ) z 5 5 ! + ) .
    12.4.5 u 1 ( a , z ) = e 1 4 z 2 ( 1 + ( a 1 2 ) z 2 2 ! + ( a 1 2 ) ( a 5 2 ) z 4 4 ! + ) ,
    12.4.6 u 2 ( a , z ) = e 1 4 z 2 ( z + ( a 3 2 ) z 3 3 ! + ( a 3 2 ) ( a 7 2 ) z 5 5 ! + ) .
    24: 23 Weierstrass Elliptic and Modular
    Functions
    25: 33.25 Approximations
    Cody and Hillstrom (1970) provides rational approximations of the phase shift σ 0 ( η ) = ph Γ ( 1 + i η ) (see (33.2.10)) for the ranges 0 η 2 , 2 η 4 , and 4 η . …09×10⁻²⁰ to 4. …
    26: Ranjan Roy
  • In November 2015, Roy was named Associate Editor for Chapters 1 and 4.
    27: 12.9 Asymptotic Expansions for Large Variable
    12.9.1 U ( a , z ) e 1 4 z 2 z a 1 2 s = 0 ( 1 ) s ( 1 2 + a ) 2 s s ! ( 2 z 2 ) s , | ph z | 3 4 π δ ( < 3 4 π ) ,
    12.9.2 V ( a , z ) 2 π e 1 4 z 2 z a 1 2 s = 0 ( 1 2 a ) 2 s s ! ( 2 z 2 ) s , | ph z | 1 4 π δ ( < 1 4 π ) .
    12.9.3 U ( a , z ) e 1 4 z 2 z a 1 2 s = 0 ( 1 ) s ( 1 2 + a ) 2 s s ! ( 2 z 2 ) s ± i 2 π Γ ( 1 2 + a ) e i π a e 1 4 z 2 z a 1 2 s = 0 ( 1 2 a ) 2 s s ! ( 2 z 2 ) s , 1 4 π + δ ± ph z 5 4 π δ ,
    12.9.4 V ( a , z ) 2 π e 1 4 z 2 z a 1 2 s = 0 ( 1 2 a ) 2 s s ! ( 2 z 2 ) s ± i Γ ( 1 2 a ) e 1 4 z 2 z a 1 2 s = 0 ( 1 ) s ( 1 2 + a ) 2 s s ! ( 2 z 2 ) s , 1 4 π + δ ± ph z 3 4 π δ .
    28: 18.4 Graphics
    See accompanying text
    Figure 18.4.1: Jacobi polynomials P n ( 1.5 , 0.5 ) ( x ) , n = 1 , 2 , 3 , 4 , 5 . Magnify
    See accompanying text
    Figure 18.4.3: Chebyshev polynomials T n ( x ) , n = 1 , 2 , 3 , 4 , 5 . Magnify
    See accompanying text
    Figure 18.4.4: Legendre polynomials P n ( x ) , n = 1 , 2 , 3 , 4 , 5 . Magnify
    See accompanying text
    Figure 18.4.5: Laguerre polynomials L n ( x ) , n = 1 , 2 , 3 , 4 , 5 . Magnify
    See accompanying text
    Figure 18.4.6: Laguerre polynomials L 3 ( α ) ( x ) , α = 0 , 1 , 2 , 3 , 4 . Magnify
    29: 30.16 Methods of Computation
    A j , j + 1 = γ 2 ( 2 m + 2 j 1 ) ( 2 m + 2 j ) ( 2 m + 4 j 1 ) ( 2 m + 4 j + 1 ) ,
    For m = 2 , n = 4 , γ 2 = 10 , …
    α 2 , 4 = 13.97907 459 ,
    which yields λ 4 2 ( 10 ) = 13.97907 345 . … The coefficients a n , k m ( γ 2 ) calculated in §30.16(ii) can be used to compute S n m ( j ) ( z , γ ) , j = 1 , 2 , 3 , 4 from (30.11.3) as well as the connection coefficients K n m ( γ ) from (30.11.10) and (30.11.11). …
    30: 4.9 Continued Fractions
    4.9.1 ln ( 1 + z ) = z 1 + z 2 + z 3 + 4 z 4 + 4 z 5 + 9 z 6 + 9 z 7 + , | ph ( 1 + z ) | < π .
    4.9.2 ln ( 1 + z 1 z ) = 2 z 1 z 2 3 4 z 2 5 9 z 2 7 16 z 2 9 ,
    = 1 + z 1 ( z / 2 ) + z 2 / ( 4 3 ) 1 + z 2 / ( 4 15 ) 1 + z 2 / ( 4 35 ) 1 + z 2 / ( 4 ( 4 n 2 1 ) ) 1 +
    4.9.4 e z e n 1 ( z ) = z n n ! n ! z ( n + 1 ) + z ( n + 2 ) ( n + 1 ) z ( n + 3 ) + 2 z ( n + 4 ) ( n + 2 ) z ( n + 5 ) + 3 z ( n + 6 ) ,