12.3 Graphics12.5 Integral Representations

§12.4 Power-Series Expansions

12.4.1\mathop{U\/}\nolimits\!\left(a,z\right)=\mathop{U\/}\nolimits\!\left(a,0\right)u_{1}(a,z)+{\mathop{U\/}\nolimits^{{\prime}}}\!\left(a,0\right)u_{2}(a,z),
12.4.2\mathop{V\/}\nolimits\!\left(a,z\right)=\mathop{V\/}\nolimits\!\left(a,0\right)u_{1}(a,z)+{\mathop{V\/}\nolimits^{{\prime}}}\!\left(a,0\right)u_{2}(a,z),

where the initial values are given by (12.2.6)–(12.2.9), and u_{1}(a,z) and u_{2}(a,z) are the even and odd solutions of (12.2.2) given by

12.4.3u_{1}(a,z)=e^{{-\tfrac{1}{4}z^{2}}}\left(1+(a+\tfrac{1}{2})\frac{z^{2}}{2!}+(a+\tfrac{1}{2})(a+\tfrac{5}{2})\frac{z^{4}}{4!}+\cdots\right),
12.4.4u_{2}(a,z)=e^{{-\tfrac{1}{4}z^{2}}}\left(z+(a+\tfrac{3}{2})\frac{z^{3}}{3!}+(a+\tfrac{3}{2})(a+\tfrac{7}{2})\frac{z^{5}}{5!}+\cdots\right).

Equivalently,

12.4.5u_{1}(a,z)=e^{{\tfrac{1}{4}z^{2}}}\left(1+(a-\tfrac{1}{2})\frac{z^{2}}{2!}+(a-\tfrac{1}{2})(a-\tfrac{5}{2})\frac{z^{4}}{4!}+\cdots\right),
12.4.6u_{2}(a,z)=e^{{\tfrac{1}{4}z^{2}}}\left(z+(a-\tfrac{3}{2})\frac{z^{3}}{3!}+(a-\tfrac{3}{2})(a-\tfrac{7}{2})\frac{z^{5}}{5!}+\cdots\right).

These series converge for all values of z.