About the Project

sums of squares

AdvancedHelp

(0.002 seconds)

31—40 of 48 matching pages

31: 1.3 Determinants, Linear Operators, and Spectral Expansions
1.3.4 det [ a j k ] = = 1 n a j A j .
The determinant of an upper or lower triangular, or diagonal, square matrix 𝐀 is the product of the diagonal elements det ( 𝐀 ) = i = 1 n a i i . …
1.3.9 det [ a j k ] 2 ( k = 1 n a 1 k 2 ) ( k = 1 n a 2 k 2 ) ( k = 1 n a n k 2 ) .
for every distinct pair of j , k , or when one of the factors k = 1 n a j k 2 vanishes. … Square matices can be seen as linear operators because 𝐀 ( α 𝐚 + β 𝐛 ) = α 𝐀 𝐚 + β 𝐀 𝐛 for all α , β and 𝐚 , 𝐛 𝐄 n , the space of all n -dimensional vectors. …
32: 1.4 Calculus of One Variable
where the sum is over all nonnegative integers m 1 , m 2 , , m n that satisfy m 1 + 2 m 2 + + n m n = n , and k = m 1 + m 2 + + m n . … Definite integrals over the Stieltjes measure d α ( x ) could represent a sum, an integral, or a combination of the two. Let d α ( x ) = w ( x ) d x + n = 1 N w n δ ( x x n ) d x , x n ( a , b ) , n = 1 , N . …
Square-Integrable Functions
A function f ( x ) is square-integrable if …
33: 36.12 Uniform Approximation of Integrals
36.12.3 I ( 𝐲 , k ) = exp ( i k A ( 𝐲 ) ) k 1 / ( K + 2 ) m = 0 K a m ( 𝐲 ) k m / ( K + 2 ) ( δ m , 0 ( 1 δ m , 0 ) i z m ) Ψ K ( 𝐳 ( 𝐲 ; k ) ) ( 1 + O ( 1 k ) ) ,
36.12.8 a m ( 𝐲 ) = n = 1 K + 1 P m n ( 𝐲 ) G n ( 𝐲 ) ( t n ( 𝐱 ( 𝐲 ) ) ) m + 1 l = 1 l n K + 1 ( t n ( 𝐱 ( 𝐲 ) ) t l ( 𝐱 ( 𝐲 ) ) ) ,
36.12.9 P m n ( 𝐲 ) = ( t n ( 𝐱 ( 𝐲 ) ) ) K + 1 + l = m + 2 K l K + 2 x l ( 𝐲 ) ( t n ( 𝐱 ( 𝐲 ) ) ) l 1 ,
The square roots are real and positive when 𝐲 is such that all the critical points are real, and are defined by analytic continuation elsewhere. …
34: 1.17 Integral and Series Representations of the Dirac Delta
In the language of physics and applied mathematics, these equations indicate the normalizations chosen for these non- L 2 improper eigenfunctions of the differential operators (with derivatives respect to spatial co-ordinates) which generate them; the normalizations (1.17.12_1) and (1.17.12_2) are explicitly derived in Friedman (1990, Ch. 4), the others follow similarly. … The sum k = e i k ( x a ) does not converge, but (1.17.18) can be interpreted as a generalized integral in the sense that …
1.17.21 δ ( x a ) = 1 2 π k = e i k ( x a ) .
1.17.22 δ ( x a ) = k = 0 ( k + 1 2 ) P k ( x ) P k ( a ) .
1.17.25 δ ( cos θ 1 cos θ 2 ) δ ( ϕ 1 ϕ 2 ) = = 0 m = Y , m ( θ 1 , ϕ 1 ) Y , m ( θ 2 , ϕ 2 ) ¯ .
35: 35.7 Gaussian Hypergeometric Function of Matrix Argument
35.7.3 F 1 2 ( a , b c ; [ t 1 0 0 t 2 ] ) = k = 0 ( a ) k ( c a ) k ( b ) k ( c b ) k k ! ( c ) 2 k ( c 1 2 ) k ( t 1 t 2 ) k F 1 2 ( a + k , b + k c + 2 k ; t 1 + t 2 t 1 t 2 ) .
36: 10.25 Definitions
10.25.2 I ν ( z ) = ( 1 2 z ) ν k = 0 ( 1 4 z 2 ) k k ! Γ ( ν + k + 1 ) .
The principal branch corresponds to the principal value of the square root in (10.25.3), is analytic in ( , 0 ] , and two-valued and discontinuous on the cut ph z = ± π . …
37: 19.18 Derivatives and Differential Equations
w j = b j / j = 1 n b j ,
a = a + j = 1 n b j .
19.18.6 ( x + y + z ) R F ( x , y , z ) = 1 2 x y z ,
19.18.8 j = 1 n j R a ( 𝐛 ; 𝐳 ) = a R a 1 ( 𝐛 ; 𝐳 ) .
19.18.11 j = 1 n z j j v = a v ,
38: 21.7 Riemann Surfaces
Either branch of the square roots may be chosen, as long as the branch is consistent across Γ . …
21.7.17 P j U k = 1 4 θ [ 𝜶 k + 𝜼 1 ( P j ) 𝜷 k + 𝜼 2 ( P j ) ] ( 𝐳 k | 𝛀 ) = P j U c k = 1 4 θ [ 𝜶 k + 𝜼 1 ( P j ) 𝜷 k + 𝜼 2 ( P j ) ] ( 𝐳 k | 𝛀 ) .
39: 19.21 Connection Formulas
19.21.7 ( x y ) R D ( y , z , x ) + ( z y ) R D ( x , y , z ) = 3 R F ( x , y , z ) 3 y 1 / 2 x 1 / 2 z 1 / 2 ,
19.21.8 R D ( y , z , x ) + R D ( z , x , y ) + R D ( x , y , z ) = 3 x 1 / 2 y 1 / 2 z 1 / 2 ,
19.21.10 2 R G ( x , y , z ) = z R F ( x , y , z ) 1 3 ( x z ) ( y z ) R D ( x , y , z ) + x 1 / 2 y 1 / 2 z 1 / 2 , z 0 .
19.21.11 6 R G ( x , y , z ) = 3 ( x + y + z ) R F ( x , y , z ) x 2 R D ( y , z , x ) = x ( y + z ) R D ( y , z , x ) ,
40: 22.16 Related Functions
22.16.9 am ( x , k ) = π 2 K x + 2 n = 1 q n sin ( 2 n ζ ) n ( 1 + q 2 n ) .
See Figure 22.16.2. …
22.16.26 ( x , k ) = 0 x ( cs 2 ( t , k ) t 2 ) d t + x 1 cn ( x , k ) ds ( x , k ) .