About the Project

squares and products

AdvancedHelp

(0.002 seconds)

21—30 of 38 matching pages

21: Bibliography
  • T. Agoh and K. Dilcher (2011) Integrals of products of Bernoulli polynomials. J. Math. Anal. Appl. 381 (1), pp. 10–16.
  • J. R. Albright (1977) Integrals of products of Airy functions. J. Phys. A 10 (4), pp. 485–490.
  • T. M. Apostol and H. S. Zuckerman (1951) On magic squares constructed by the uniform step method. Proc. Amer. Math. Soc. 2 (4), pp. 557–565.
  • R. Askey, T. H. Koornwinder, and M. Rahman (1986) An integral of products of ultraspherical functions and a q -extension. J. London Math. Soc. (2) 33 (1), pp. 133–148.
  • 22: Bibliography G
  • E. T. Goodwin (1949a) Recurrence relations for cross-products of Bessel functions. Quart. J. Mech. Appl. Math. 2 (1), pp. 72–74.
  • H. P. W. Gottlieb (1985) On the exceptional zeros of cross-products of derivatives of spherical Bessel functions. Z. Angew. Math. Phys. 36 (3), pp. 491–494.
  • I. S. Gradshteyn and I. M. Ryzhik (2000) Table of Integrals, Series, and Products. 6th edition, Academic Press Inc., San Diego, CA.
  • E. Grosswald (1985) Representations of Integers as Sums of Squares. Springer-Verlag, New York.
  • 23: Bibliography S
  • L. Z. Salchev and V. B. Popov (1976) A property of the zeros of cross-product Bessel functions of different orders. Z. Angew. Math. Mech. 56 (2), pp. 120–121.
  • H. Shanker (1939) On the expansion of the parabolic cylinder function in a series of the product of two parabolic cylinder functions. J. Indian Math. Soc. (N. S.) 3, pp. 226–230.
  • H. Shanker (1940c) On the expansion of the product of two parabolic cylinder functions of non integral order. Proc. Benares Math. Soc. (N. S.) 2, pp. 61–68.
  • N. T. Shawagfeh (1992) The Laplace transforms of products of Airy functions. Dirāsāt Ser. B Pure Appl. Sci. 19 (2), pp. 7–11.
  • B. L. Shea (1988) Algorithm AS 239. Chi-squared and incomplete gamma integral. Appl. Statist. 37 (3), pp. 466–473.
  • 24: 19.25 Relations to Other Functions
    19.25.7 E ( ϕ , k ) = 2 R G ( c 1 , c k 2 , c ) ( c 1 ) R F ( c 1 , c k 2 , c ) c 1 c k 2 / c ,
    19.25.10 E ( ϕ , k ) = k 2 R F ( c 1 , c k 2 , c ) + 1 3 k 2 k 2 R D ( c 1 , c , c k 2 ) + k 2 c 1 / ( c c k 2 ) , c > k 2 ,
    19.25.11 E ( ϕ , k ) = 1 3 k 2 R D ( c k 2 , c , c 1 ) + c k 2 / ( c c 1 ) , ϕ 1 2 π .
    25: 19.20 Special Cases
    19.20.19 R D ( x , y , z ) 3 x 1 / 2 y 1 / 2 z 1 / 2 , z / x y 0 .
    26: 1.11 Zeros of Polynomials
    1.11.9 D = a n 2 n 2 j < k ( z j z k ) 2 ,
    The sum and product of the roots are respectively b / a and c / a . … The square roots are chosen so that …
    27: 21.7 Riemann Surfaces
    Either branch of the square roots may be chosen, as long as the branch is consistent across Γ . …
    21.7.17 P j U k = 1 4 θ [ 𝜶 k + 𝜼 1 ( P j ) 𝜷 k + 𝜼 2 ( P j ) ] ( 𝐳 k | 𝛀 ) = P j U c k = 1 4 θ [ 𝜶 k + 𝜼 1 ( P j ) 𝜷 k + 𝜼 2 ( P j ) ] ( 𝐳 k | 𝛀 ) .
    28: 18.36 Miscellaneous Polynomials
    Sobolev OP’s are orthogonal with respect to an inner product involving derivatives. … These are matrix-valued polynomials that are orthogonal with respect to a square matrix of measures on the real line. …
    29: 19.18 Derivatives and Differential Equations
    19.18.6 ( x + y + z ) R F ( x , y , z ) = 1 2 x y z ,
    30: 36.12 Uniform Approximation of Integrals
    36.12.8 a m ( 𝐲 ) = n = 1 K + 1 P m n ( 𝐲 ) G n ( 𝐲 ) ( t n ( 𝐱 ( 𝐲 ) ) ) m + 1 l = 1 l n K + 1 ( t n ( 𝐱 ( 𝐲 ) ) t l ( 𝐱 ( 𝐲 ) ) ) ,
    The square roots are real and positive when 𝐲 is such that all the critical points are real, and are defined by analytic continuation elsewhere. …