About the Project

of the first and second kinds

AdvancedHelp

(0.012 seconds)

11—20 of 205 matching pages

11: 19.7 Connection Formulas
§19.7(i) Complete Integrals of the First and Second Kinds
E ( 1 / k ) = ( 1 / k ) ( E ( k ) ± i E ( k ) k 2 K ( k ) i k 2 K ( k ) ) ,
E ( 1 / k ) = ( 1 / k ) ( E ( k ) i E ( k ) k 2 K ( k ) ± i k 2 K ( k ) ) ,
E ( ϕ , k 1 ) = ( E ( β , k ) k 2 F ( β , k ) ) / k ,
12: 10.31 Power Series
10.31.1 K n ( z ) = 1 2 ( 1 2 z ) n k = 0 n 1 ( n k 1 ) ! k ! ( 1 4 z 2 ) k + ( 1 ) n + 1 ln ( 1 2 z ) I n ( z ) + ( 1 ) n 1 2 ( 1 2 z ) n k = 0 ( ψ ( k + 1 ) + ψ ( n + k + 1 ) ) ( 1 4 z 2 ) k k ! ( n + k ) ! ,
10.31.2 K 0 ( z ) = ( ln ( 1 2 z ) + γ ) I 0 ( z ) + 1 4 z 2 ( 1 ! ) 2 + ( 1 + 1 2 ) ( 1 4 z 2 ) 2 ( 2 ! ) 2 + ( 1 + 1 2 + 1 3 ) ( 1 4 z 2 ) 3 ( 3 ! ) 2 + .
13: 19.6 Special Cases
K ( 0 ) = E ( 0 ) = K ( 1 ) = E ( 1 ) = 1 2 π ,
Π ( α 2 , k ) K ( k ) ( E ( k ) / k 2 ) , α 2 1 + ,
Exact values of K ( k ) and E ( k ) for various special values of k are given in Byrd and Friedman (1971, 111.10 and 111.11) and Cooper et al. (2006). …
Π ( ϕ , 1 , k ) = F ( ϕ , k ) 1 k 2 ( E ( ϕ , k ) Δ tan ϕ ) .
14: 19.38 Approximations
Minimax polynomial approximations (§3.11(i)) for K ( k ) and E ( k ) in terms of m = k 2 with 0 m < 1 can be found in Abramowitz and Stegun (1964, §17.3) with maximum absolute errors ranging from 4×10⁻⁵ to 2×10⁻⁸. Approximations of the same type for K ( k ) and E ( k ) for 0 < k 1 are given in Cody (1965a) with maximum absolute errors ranging from 4×10⁻⁵ to 4×10⁻¹⁸. …
15: 19.3 Graphics
See accompanying text
Figure 19.3.1: K ( k ) and E ( k ) as functions of k 2 for 2 k 2 1 . Graphs of K ( k ) and E ( k ) are the mirror images in the vertical line k 2 = 1 2 . Magnify
See accompanying text
Figure 19.3.5: Π ( α 2 , k ) as a function of k 2 and α 2 for 2 k 2 < 1 , 2 α 2 2 . …As α 2 1 + it has the limit K ( k ) ( E ( k ) / k 2 ) . … Magnify 3D Help
See accompanying text
Figure 19.3.11: ( E ( k ) ) as a function of complex k 2 for 2 ( k 2 ) 2 , 2 ( k 2 ) 2 . …On the branch cut ( k 2 > 1 ) it has the value k E ( 1 / k ) + ( k 2 / k ) K ( 1 / k ) , with limit 1 as k 2 1 + . Magnify 3D Help
See accompanying text
Figure 19.3.12: ( E ( k ) ) as a function of complex k 2 for 2 ( k 2 ) 2 , 2 ( k 2 ) 2 . …On the upper edge of the branch cut ( k 2 > 1 ) it has the (negative) value K ( k ) E ( k ) , with limit 0 as k 2 1 + . Magnify 3D Help
16: 10.38 Derivatives with Respect to Order
10.38.3 ( 1 ) n I ν ( z ) ν | ν = n = K n ( z ) + n ! 2 ( 1 2 z ) n k = 0 n 1 ( 1 ) k ( 1 2 z ) k I k ( z ) k ! ( n k ) ,
I ν ( z ) ν | ν = 0 = K 0 ( z ) ,
17: 10.27 Connection Formulas
Other solutions of (10.25.1) are I ν ( z ) and K ν ( z ) . …
10.27.5 K n ( z ) = ( 1 ) n 1 2 ( I ν ( z ) ν | ν = n + I ν ( z ) ν | ν = n ) , n = 0 , ± 1 , ± 2 , .
10.27.9 π i J ν ( z ) = e ν π i / 2 K ν ( z e π i / 2 ) e ν π i / 2 K ν ( z e π i / 2 ) , | ph z | 1 2 π .
18: 14.6 Integer Order
19: 10.30 Limiting Forms
10.30.1 I ν ( z ) ( 1 2 z ) ν / Γ ( ν + 1 ) , ν 1 , 2 , 3 , ,
10.30.2 K ν ( z ) 1 2 Γ ( ν ) ( 1 2 z ) ν , ν > 0 ,
10.30.3 K 0 ( z ) ln z .
For K ν ( x ) , when ν is purely imaginary and x 0 + , see (10.45.2) and (10.45.7). … For K ν ( z ) see (10.25.3).
20: 14.18 Sums
14.18.3 𝖰 ν ( cos θ 1 cos θ 2 + sin θ 1 sin θ 2 cos ϕ ) = 𝖯 ν ( cos θ 1 ) 𝖰 ν ( cos θ 2 ) + 2 m = 1 ( 1 ) m 𝖯 ν m ( cos θ 1 ) 𝖰 ν m ( cos θ 2 ) cos ( m ϕ ) .
14.18.5 Q ν ( cosh ξ 1 cosh ξ 2 sinh ξ 1 sinh ξ 2 cos ϕ ) = P ν ( cosh ξ 1 ) Q ν ( cosh ξ 2 ) + 2 m = 1 ( 1 ) m P ν m ( cosh ξ 1 ) Q ν m ( cosh ξ 2 ) cos ( m ϕ ) .
14.18.7 ( x y ) k = 0 n ( 2 k + 1 ) P k ( x ) Q k ( y ) = ( n + 1 ) ( P n + 1 ( x ) Q n ( y ) P n ( x ) Q n + 1 ( y ) ) 1 .