About the Project
10 Bessel FunctionsKelvin Functions

§10.65 Power Series

Contents
  1. §10.65(i) berνx and beiνx
  2. §10.65(ii) kerνx and keiνx
  3. §10.65(iii) Cross-Products and Sums of Squares
  4. §10.65(iv) Compendia

§10.65(i) berνx and beiνx

10.65.1 berνx =(12x)νk=0cos(34νπ+12kπ)k!Γ(ν+k+1)(14x2)k,
beiνx =(12x)νk=0sin(34νπ+12kπ)k!Γ(ν+k+1)(14x2)k.
10.65.2 berx =1(14x2)2(2!)2+(14x2)4(4!)2,
beix =14x2(14x2)3(3!)2+(14x2)5(5!)2.

§10.65(ii) kerνx and keiνx

When ν is not an integer combine (10.65.1) with (10.61.6). Also, with ψ(x)=Γ(x)/Γ(x),

10.65.3 kernx =12(12x)nk=0n1(nk1)!k!cos(34nπ+12kπ)(14x2)kln(12x)bernx+14πbeinx+12(12x)nk=0ψ(k+1)+ψ(n+k+1)k!(n+k)!cos(34nπ+12kπ)(14x2)k,
10.65.4 keinx =12(12x)nk=0n1(nk1)!k!sin(34nπ+12kπ)(14x2)kln(12x)beinx14πbernx+12(12x)nk=0ψ(k+1)+ψ(n+k+1)k!(n+k)!sin(34nπ+12kπ)(14x2)k.
10.65.5 kerx =ln(12x)berx+14πbeix+k=0(1)kψ(2k+1)((2k)!)2(14x2)2k,
keix =ln(12x)beix14πberx+k=0(1)kψ(2k+2)((2k+1)!)2(14x2)2k+1.

§10.65(iii) Cross-Products and Sums of Squares

10.65.6 berν2x+beiν2x=(12x)2νk=01Γ(ν+k+1)Γ(ν+2k+1)(14x2)2kk!,
10.65.7 berνxbeiνxberνxbeiνx=(12x)2ν+1k=01Γ(ν+k+1)Γ(ν+2k+2)(14x2)2kk!,
10.65.8 berνxberνx+beiνxbeiνx=12(12x)2ν1k=01Γ(ν+k+1)Γ(ν+2k)(14x2)2kk!,
10.65.9 (berνx)2+(beiνx)2=(12x)2ν2k=02k2+2νk+14ν2Γ(ν+k+1)Γ(ν+2k+1)(14x2)2kk!.

§10.65(iv) Compendia

For further power series summable in terms of Kelvin functions and their derivatives see Hansen (1975).