About the Project

in series of Chebyshev polynomials

AdvancedHelp

(0.008 seconds)

11—20 of 29 matching pages

11: 18.2 General Orthogonal Polynomials
§18.2(vi) Zeros
This says roughly that the series (18.2.25) has the same pointwise convergence behavior as the same series with p n ( x ) = T n ( x ) , a Chebyshev polynomial of the first kind, see Table 18.3.1. … for x , y in the support of the orthogonality measure and z such that the series in (18.2.41) converges absolutely for all these x , y . … In fact, these are the only OP’s which are Sheffer polynomials (with Krawtchouk polynomials being only a finite system) … For other examples of Sheffer polynomials, not in DLMF, see Roman (1984). …
12: 7.24 Approximations
§7.24(ii) Expansions in Chebyshev Series
  • Luke (1969b, pp. 323–324) covers 1 2 π erf x and e x 2 F ( x ) for 3 x 3 (the Chebyshev coefficients are given to 20D); π x e x 2 erfc x and 2 x F ( x ) for x 3 (the Chebyshev coefficients are given to 20D and 15D, respectively). Coefficients for the Fresnel integrals are given on pp. 328–330 (20D).

  • Bulirsch (1967) provides Chebyshev coefficients for the auxiliary functions f ( x ) and g ( x ) for x 3 (15D).

  • Schonfelder (1978) gives coefficients of Chebyshev expansions for x 1 erf x on 0 x 2 , for x e x 2 erfc x on [ 2 , ) , and for e x 2 erfc x on [ 0 , ) (30D).

  • Shepherd and Laframboise (1981) gives coefficients of Chebyshev series for ( 1 + 2 x ) e x 2 erfc x on ( 0 , ) (22D).

  • 13: 6.20 Approximations
    §6.20(ii) Expansions in Chebyshev Series
  • Luke and Wimp (1963) covers Ei ( x ) for x 4 (20D), and Si ( x ) and Ci ( x ) for x 4 (20D).

  • Luke (1969b, pp. 41–42) gives Chebyshev expansions of Ein ( a x ) , Si ( a x ) , and Cin ( a x ) for 1 x 1 , a . The coefficients are given in terms of series of Bessel functions.

  • Luke (1969b, pp. 321–322) covers Ein ( x ) and Ein ( x ) for 0 x 8 (the Chebyshev coefficients are given to 20D); E 1 ( x ) for x 5 (20D), and Ei ( x ) for x 8 (15D). Coefficients for the sine and cosine integrals are given on pp. 325–327.

  • Luke (1969b, p. 25) gives a Chebyshev expansion near infinity for the confluent hypergeometric U -function (§13.2(i)) from which Chebyshev expansions near infinity for E 1 ( z ) , f ( z ) , and g ( z ) follow by using (6.11.2) and (6.11.3). Luke also includes a recursion scheme for computing the coefficients in the expansions of the U functions. If | ph z | < π the scheme can be used in backward direction.

  • 14: 7.6 Series Expansions
    §7.6 Series Expansions
    §7.6(i) Power Series
    The series in this subsection and in §7.6(ii) converge for all finite values of | z | .
    §7.6(ii) Expansions in Series of Spherical Bessel Functions
    7.6.9 erf ( a z ) = 2 z π e ( 1 2 a 2 ) z 2 n = 0 T 2 n + 1 ( a ) 𝗂 n ( 1 ) ( 1 2 z 2 ) , 1 a 1 .
    15: 11.15 Approximations
    §11.15(i) Expansions in Chebyshev Series
  • Luke (1975, pp. 416–421) gives Chebyshev-series expansions for 𝐇 n ( x ) , 𝐋 n ( x ) , 0 | x | 8 , and 𝐇 n ( x ) Y n ( x ) , x 8 , for n = 0 , 1 ; 0 x t m 𝐇 0 ( t ) d t , 0 x t m 𝐋 0 ( t ) d t , 0 | x | 8 , m = 0 , 1 and 0 x ( 𝐇 0 ( t ) Y 0 ( t ) ) d t , x t 1 ( 𝐇 0 ( t ) Y 0 ( t ) ) d t , x 8 ; the coefficients are to 20D.

  • MacLeod (1993) gives Chebyshev-series expansions for 𝐋 0 ( x ) , 𝐋 1 ( x ) , 0 x 16 , and I 0 ( x ) 𝐋 0 ( x ) , I 1 ( x ) 𝐋 1 ( x ) , x 16 ; the coefficients are to 20D.

  • §11.15(ii) Rational and Polynomial Approximations
  • Newman (1984) gives polynomial approximations for 𝐇 n ( x ) for n = 0 , 1 , 0 x 3 , and rational-fraction approximations for 𝐇 n ( x ) Y n ( x ) for n = 0 , 1 , x 3 . The maximum errors do not exceed 1.2×10⁻⁸ for the former and 2.5×10⁻⁸ for the latter.

  • 16: Bibliography W
  • E. J. Weniger (1996) Computation of the Whittaker function of the second kind by summing its divergent asymptotic series with the help of nonlinear sequence transformations. Computers in Physics 10 (5), pp. 496–503.
  • E. J. Weniger (2007) Asymptotic Approximations to Truncation Errors of Series Representations for Special Functions. In Algorithms for Approximation, A. Iske and J. Levesley (Eds.), pp. 331–348.
  • J. A. Wilson (1978) Hypergeometric Series, Recurrence Relations and Some New Orthogonal Polynomials. Ph.D. Thesis, University of Wisconsin, Madison, WI.
  • R. Wong and Y.-Q. Zhao (2003) Estimates for the error term in a uniform asymptotic expansion of the Jacobi polynomials. Anal. Appl. (Singap.) 1 (2), pp. 213–241.
  • R. Wong and Y. Zhao (2004) Uniform asymptotic expansion of the Jacobi polynomials in a complex domain. Proc. Roy. Soc. London Ser. A 460, pp. 2569–2586.
  • 17: Bibliography T
  • A. Takemura (1984) Zonal Polynomials. Institute of Mathematical Statistics Lecture Notes—Monograph Series, 4, Institute of Mathematical Statistics, Hayward, CA.
  • N. M. Temme (1994b) Computational aspects of incomplete gamma functions with large complex parameters. In Approximation and Computation. A Festschrift in Honor of Walter Gautschi, R. V. M. Zahar (Ed.), International Series of Numerical Mathematics, Vol. 119, pp. 551–562.
  • N. M. Temme (2015) Asymptotic Methods for Integrals. Series in Analysis, Vol. 6, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ.
  • J. F. Traub (1964) Iterative Methods for the Solution of Equations. Prentice-Hall Series in Automatic Computation, Prentice-Hall Inc., Englewood Cliffs, N.J..
  • A. Trellakis, A. T. Galick, and U. Ravaioli (1997) Rational Chebyshev approximation for the Fermi-Dirac integral F 3 / 2 ( x ) . Solid–State Electronics 41 (5), pp. 771–773.
  • 18: Bibliography Z
  • J. Zeng (1992) Weighted derangements and the linearization coefficients of orthogonal Sheffer polynomials. Proc. London Math. Soc. (3) 65 (1), pp. 1–22.
  • J. Zhang and J. A. Belward (1997) Chebyshev series approximations for the Bessel function Y n ( z ) of complex argument. Appl. Math. Comput. 88 (2-3), pp. 275–286.
  • A. S. Zhedanov (1991) “Hidden symmetry” of Askey-Wilson polynomials. Theoret. and Math. Phys. 89 (2), pp. 1146–1157.
  • A. Zhedanov (1998) On some classes of polynomials orthogonal on arcs of the unit circle connected with symmetric orthogonal polynomials on an interval. J. Approx. Theory 94 (1), pp. 73–106.
  • I. J. Zucker (1979) The summation of series of hyperbolic functions. SIAM J. Math. Anal. 10 (1), pp. 192–206.
  • 19: Bibliography P
  • A. M. Parkhurst and A. T. James (1974) Zonal Polynomials of Order 1 Through 12 . In Selected Tables in Mathematical Statistics, H. L. Harter and D. B. Owen (Eds.), Vol. 2, pp. 199–388.
  • R. Piessens (1984a) Chebyshev series approximations for the zeros of the Bessel functions. J. Comput. Phys. 53 (1), pp. 188–192.
  • R. Piessens and M. Branders (1972) Chebyshev polynomial expansions of the Riemann zeta function. Math. Comp. 26 (120), pp. G1–G5.
  • P. J. Prince (1975) Algorithm 498: Airy functions using Chebyshev series approximations. ACM Trans. Math. Software 1 (4), pp. 372–379.
  • A. P. Prudnikov, Yu. A. Brychkov, and O. I. Marichev (1986b) Integrals and Series: Special Functions, Vol. 2. Gordon & Breach Science Publishers, New York.
  • 20: Bibliography R
  • M. Razaz and J. L. Schonfelder (1981) Remark on Algorithm 498: Airy functions using Chebyshev series approximations. ACM Trans. Math. Software 7 (3), pp. 404–405.
  • R. Roy (2011) Sources in the development of mathematics. Cambridge University Press, Cambridge.
  • W. Rudin (1973) Functional Analysis. McGraw-Hill Book Co., New York.
  • W. Rudin (1976) Principles of Mathematical Analysis. 3rd edition, McGraw-Hill Book Co., New York.
  • J. Rushchitsky and S. Rushchitska (2000) On Simple Waves with Profiles in the form of some Special Functions—Chebyshev-Hermite, Mathieu, Whittaker—in Two-phase Media. In Differential Operators and Related Topics, Vol. I (Odessa, 1997), Operator Theory: Advances and Applications, Vol. 117, pp. 313–322.