About the Project

generalized hypergeometric differential equation

AdvancedHelp

(0.012 seconds)

31—40 of 55 matching pages

31: Bibliography C
  • L. G. Cabral-Rosetti and M. A. Sanchis-Lozano (2000) Generalized hypergeometric functions and the evaluation of scalar one-loop integrals in Feynman diagrams. J. Comput. Appl. Math. 115 (1-2), pp. 93–99.
  • T. W. Chaundy (1969) Elementary Differential Equations. Clarendon Press, Oxford.
  • D. S. Clemm (1969) Algorithm 352: Characteristic values and associated solutions of Mathieu’s differential equation. Comm. ACM 12 (7), pp. 399–407.
  • E. A. Coddington and N. Levinson (1955) Theory of ordinary differential equations. McGraw-Hill Book Company, Inc., New York-Toronto-London.
  • F. Cooper, A. Khare, and A. Saxena (2006) Exact elliptic compactons in generalized Korteweg-de Vries equations. Complexity 11 (6), pp. 30–34.
  • 32: Bibliography K
  • H. Ki and Y. Kim (2000) On the zeros of some generalized hypergeometric functions. J. Math. Anal. Appl. 243 (2), pp. 249–260.
  • U. J. Knottnerus (1960) Approximation Formulae for Generalized Hypergeometric Functions for Large Values of the Parameters. J. B. Wolters, Groningen.
  • J. Koekoek, R. Koekoek, and H. Bavinck (1998) On differential equations for Sobolev-type Laguerre polynomials. Trans. Amer. Math. Soc. 350 (1), pp. 347–393.
  • T. H. Koornwinder (2015) Fractional integral and generalized Stieltjes transforms for hypergeometric functions as transmutation operators. SIGMA Symmetry Integrability Geom. Methods Appl. 11, pp. Paper 074, 22.
  • E. D. Krupnikov and K. S. Kölbig (1997) Some special cases of the generalized hypergeometric function F q q + 1 . J. Comput. Appl. Math. 78 (1), pp. 79–95.
  • 33: Bibliography
  • A. S. Abdullaev (1985) Asymptotics of solutions of the generalized sine-Gordon equation, the third Painlevé equation and the d’Alembert equation. Dokl. Akad. Nauk SSSR 280 (2), pp. 265–268 (Russian).
  • S. Ahmed and M. E. Muldoon (1980) On the zeros of confluent hypergeometric functions. III. Characterization by means of nonlinear equations. Lett. Nuovo Cimento (2) 29 (11), pp. 353–358.
  • G. D. Anderson, S.-L. Qiu, M. K. Vamanamurthy, and M. Vuorinen (2000) Generalized elliptic integrals and modular equations. Pacific J. Math. 192 (1), pp. 1–37.
  • U. M. Ascher and L. R. Petzold (1998) Computer Methods for Ordinary Differential Equations and Differential-Algebraic Equations. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA.
  • R. Askey and J. Wilson (1985) Some basic hypergeometric orthogonal polynomials that generalize Jacobi polynomials. Mem. Amer. Math. Soc. 54 (319), pp. iv+55.
  • 34: 14.19 Toroidal (or Ring) Functions
    This form of the differential equation arises when Laplace’s equation is transformed into toroidal coordinates ( η , θ , ϕ ) , which are related to Cartesian coordinates ( x , y , z ) by …
    §14.19(ii) Hypergeometric Representations
    With 𝐅 as in §14.3 and ξ > 0 ,
    14.19.2 P ν 1 2 μ ( cosh ξ ) = Γ ( 1 2 μ ) π 1 / 2 ( 1 e 2 ξ ) μ e ( ν + ( 1 / 2 ) ) ξ 𝐅 ( 1 2 μ , 1 2 + ν μ ; 1 2 μ ; 1 e 2 ξ ) , μ 1 2 , 3 2 , 5 2 , .
    35: 18.27 q -Hahn Class
    §18.27(i) Introduction
    For the notation of q -hypergeometric functions see §§17.2 and 17.4(i). … They are defined by their q -hypergeometric representations, followed by their orthogonality properties. …
    §18.27(ii) q -Hahn Polynomials
    Discrete q -Hermite II
    36: 18.28 Askey–Wilson Class
    For the notation of q -hypergeometric functions see §§17.2 and 17.4(i).
    §18.28(ii) Askey–Wilson Polynomials
    More generally, …
    q -Difference Equation
    Genest et al. (2016) showed that these polynomials coincide with the nonsymmetric Wilson polynomials in Groenevelt (2007).
    37: 13.8 Asymptotic Approximations for Large Parameters
    To obtain approximations for M ( a , b , z ) and U ( a , b , z ) that hold as b , with a > 1 2 b and z > 0 combine (13.14.4), (13.14.5) with §13.20(i). … For asymptotic approximations to M ( a , b , x ) and U ( a , b , x ) as a that hold uniformly with respect to x ( 0 , ) and bounded positive values of ( b 1 ) / | a | , combine (13.14.4), (13.14.5) with §§13.21(ii), 13.21(iii). …
    13.8.11 U ( a , b , z ) 2 ( z / a ) ( 1 b ) / 2 e z / 2 Γ ( a ) ( K b 1 ( 2 a z ) s = 0 p s ( z ) a s + z / a K b ( 2 a z ) s = 0 q s ( z ) a s ) ,
    13.8.16 ( k + 1 ) c k + 1 ( z ) + s = 0 k ( b B s + 1 ( s + 1 ) ! + z ( s + 1 ) B s + 2 ( s + 2 ) ! ) c k s ( z ) = 0 , k = 0 , 1 , 2 , .
    For generalizations in which z is also allowed to be large see Temme and Veling (2022).
    38: 8.19 Generalized Exponential Integral
    §8.19 Generalized Exponential Integral
    §8.19(ii) Graphics
    §8.19(vi) Relation to Confluent Hypergeometric Function
    §8.19(ix) Inequalities
    §8.19(xi) Further Generalizations
    39: 19.23 Integral Representations
    19.23.6_5 R G ( x , y , z ) = 1 4 π 0 2 π 0 π ( x sin 2 θ cos 2 ϕ + y sin 2 θ sin 2 ϕ + z cos 2 θ ) 1 / 2 sin θ d θ d ϕ ,
    19.23.8 R a ( 𝐛 ; 𝐳 ) = 2 B ( b 1 , b 2 ) 0 π / 2 ( z 1 cos 2 θ + z 2 sin 2 θ ) a ( cos θ ) 2 b 1 1 ( sin θ ) 2 b 2 1 d θ , b 1 , b 2 > 0 ; z 1 , z 2 > 0 .
    19.23.9 R a ( 𝐛 ; 𝐳 ) = 4 Γ ( b 1 + b 2 + b 3 ) Γ ( b 1 ) Γ ( b 2 ) Γ ( b 3 ) 0 π / 2 0 π / 2 ( j = 1 3 z j l j 2 ) a j = 1 3 l j 2 b j 1 sin θ d θ d ϕ , b j > 0 , z j > 0 .
    19.23.10 R a ( 𝐛 ; 𝐳 ) = 1 B ( a , a ) 0 1 u a 1 ( 1 u ) a 1 j = 1 n ( 1 u + u z j ) b j d u , a , a > 0 ; a + a = j = 1 n b j ; z j ( , 0 ] .
    For generalizations of (19.23.6_5) and (19.23.8) see Carlson (1964, (6.2), (6.12), and (6.1)).
    40: Bibliography D
  • A. Debosscher (1998) Unification of one-dimensional Fokker-Planck equations beyond hypergeometrics: Factorizer solution method and eigenvalue schemes. Phys. Rev. E (3) 57 (1), pp. 252–275.
  • K. Dekker and J. G. Verwer (1984) Stability of Runge-Kutta Methods for Stiff Nonlinear Differential Equations. CWI Monographs, Vol. 2, North-Holland Publishing Co., Amsterdam.
  • T. M. Dunster (1996c) Error bounds for exponentially improved asymptotic solutions of ordinary differential equations having irregular singularities of rank one. Methods Appl. Anal. 3 (1), pp. 109–134.
  • T. M. Dunster (2001a) Convergent expansions for solutions of linear ordinary differential equations having a simple turning point, with an application to Bessel functions. Stud. Appl. Math. 107 (3), pp. 293–323.
  • T. M. Dunster (2014) Olver’s error bound methods applied to linear ordinary differential equations having a simple turning point. Anal. Appl. (Singap.) 12 (4), pp. 385–402.