About the Project

expansions in series of spherical Bessel functions

AdvancedHelp

(0.015 seconds)

11—20 of 24 matching pages

11: Bibliography S
  • M. J. Seaton (2002b) FGH, a code for the calculation of Coulomb radial wave functions from series expansions. Comput. Phys. Comm. 146 (2), pp. 250–253.
  • H. Shanker (1939) On the expansion of the parabolic cylinder function in a series of the product of two parabolic cylinder functions. J. Indian Math. Soc. (N. S.) 3, pp. 226–230.
  • H. Shanker (1940a) On integral representation of Weber’s parabolic cylinder function and its expansion into an infinite series. J. Indian Math. Soc. (N. S.) 4, pp. 34–38.
  • O. A. Sharafeddin, H. F. Bowen, D. J. Kouri, and D. K. Hoffman (1992) Numerical evaluation of spherical Bessel transforms via fast Fourier transforms. J. Comput. Phys. 100 (2), pp. 294–296.
  • B. D. Sleeman (1966b) The expansion of Lamé functions into series of associated Legendre functions of the second kind. Proc. Cambridge Philos. Soc. 62, pp. 441–452.
  • 12: Bibliography H
  • P. I. Hadži (1976a) Expansions for the probability function in series of Čebyšev polynomials and Bessel functions. Bul. Akad. Štiince RSS Moldoven. 1976 (1), pp. 77–80, 96 (Russian).
  • F. E. Harris (2000) Spherical Bessel expansions of sine, cosine, and exponential integrals. Appl. Numer. Math. 34 (1), pp. 95–98.
  • C. J. Howls and A. B. Olde Daalhuis (1999) On the resurgence properties of the uniform asymptotic expansion of Bessel functions of large order. Proc. Roy. Soc. London Ser. A 455, pp. 3917–3930.
  • J. Humblet (1985) Bessel function expansions of Coulomb wave functions. J. Math. Phys. 26 (4), pp. 656–659.
  • G. Hunter and M. Kuriyan (1976) Asymptotic expansions of Mathieu functions in wave mechanics. J. Comput. Phys. 21 (3), pp. 319–325.
  • 13: Bibliography D
  • B. Davies (1973) Complex zeros of linear combinations of spherical Bessel functions and their derivatives. SIAM J. Math. Anal. 4 (1), pp. 128–133.
  • G. Delic (1979b) Chebyshev series for the spherical Bessel function j l ( r ) . Comput. Phys. Comm. 18 (1), pp. 73–86.
  • T. M. Dunster, D. A. Lutz, and R. Schäfke (1993) Convergent Liouville-Green expansions for second-order linear differential equations, with an application to Bessel functions. Proc. Roy. Soc. London Ser. A 440, pp. 37–54.
  • T. M. Dunster (2001a) Convergent expansions for solutions of linear ordinary differential equations having a simple turning point, with an application to Bessel functions. Stud. Appl. Math. 107 (3), pp. 293–323.
  • T. M. Dunster (2001c) Uniform asymptotic expansions for the reverse generalized Bessel polynomials, and related functions. SIAM J. Math. Anal. 32 (5), pp. 987–1013.
  • 14: Bibliography
  • M. Abramowitz (1954) Regular and irregular Coulomb wave functions expressed in terms of Bessel-Clifford functions. J. Math. Physics 33, pp. 111–116.
  • Z. Altaç (1996) Integrals involving Bickley and Bessel functions in radiative transfer, and generalized exponential integral functions. J. Heat Transfer 118 (3), pp. 789–792.
  • T. M. Apostol (1990) Modular Functions and Dirichlet Series in Number Theory. 2nd edition, Graduate Texts in Mathematics, Vol. 41, Springer-Verlag, New York.
  • R. W. B. Ardill and K. J. M. Moriarty (1978) Spherical Bessel functions j n and y n of integer order and real argument. Comput. Phys. Comm. 14 (3-4), pp. 261–265.
  • R. Askey (1975b) Orthogonal Polynomials and Special Functions. CBMS-NSF Regional Conference Series in Applied Mathematics, Vol. 21, Society for Industrial and Applied Mathematics, Philadelphia, PA.
  • 15: Errata
  • Equation (18.34.2)
    18.34.2
    y n ( x ) = y n ( x ; 2 ) = 2 π 1 x 1 e 1 / x 𝗄 n ( x 1 ) ,
    θ n ( x ) = x n y n ( x 1 ) = 2 π 1 x n + 1 e x 𝗄 n ( x )

    This equation was updated to include definitions in terms of the modified spherical Bessel function of the second kind.

  • Chapter 1 Additions

    The following additions were made in Chapter 1:

  • Expansion

    §4.13 has been enlarged. The Lambert W -function is multi-valued and we use the notation W k ( x ) , k , for the branches. The original two solutions are identified via Wp ( x ) = W 0 ( x ) and Wm ( x ) = W ± 1 ( x 0 i ) .

    Other changes are the introduction of the Wright ω -function and tree T -function in (4.13.1_2) and (4.13.1_3), simplification formulas (4.13.3_1) and (4.13.3_2), explicit representation (4.13.4_1) for d n W d z n , additional Maclaurin series (4.13.5_1) and (4.13.5_2), an explicit expansion about the branch point at z = e 1 in (4.13.9_1), extending the number of terms in asymptotic expansions (4.13.10) and (4.13.11), and including several integrals and integral representations for Lambert W -functions in the end of the section.

  • Chapters 10 Bessel Functions, 18 Orthogonal Polynomials, 34 3j, 6j, 9j Symbols

    The Legendre polynomial P n was mistakenly identified as the associated Legendre function P n in §§10.54, 10.59, 10.60, 18.18, 18.41, 34.3 (and was thus also affected by the bug reported below). These symbols now link correctly to their definitions. Reported by Roy Hughes on 2022-05-23

  • Subsection 25.2(ii) Other Infinite Series

    It is now mentioned that (25.2.5), defines the Stieltjes constants γ n . Consequently, γ n in (25.2.4), (25.6.12) are now identified as the Stieltjes constants.

  • 16: Bibliography B
  • L. V. Babushkina, M. K. Kerimov, and A. I. Nikitin (1988b) Algorithms for evaluating spherical Bessel functions in the complex domain. Zh. Vychisl. Mat. i Mat. Fiz. 28 (12), pp. 1779–1788, 1918.
  • C. B. Balogh (1967) Asymptotic expansions of the modified Bessel function of the third kind of imaginary order. SIAM J. Appl. Math. 15, pp. 1315–1323.
  • A. R. Barnett (1996) The Calculation of Spherical Bessel Functions and Coulomb Functions. In Computational Atomic Physics: Electron and Positron Collisions with Atoms and Ions, K. Bartschat and J. Hinze (Eds.), pp. 181–202.
  • W. G. C. Boyd (1987) Asymptotic expansions for the coefficient functions that arise in turning-point problems. Proc. Roy. Soc. London Ser. A 410, pp. 35–60.
  • W. G. C. Boyd (1990a) Asymptotic Expansions for the Coefficient Functions Associated with Linear Second-order Differential Equations: The Simple Pole Case. In Asymptotic and Computational Analysis (Winnipeg, MB, 1989), R. Wong (Ed.), Lecture Notes in Pure and Applied Mathematics, Vol. 124, pp. 53–73.
  • 17: Bibliography M
  • T. M. MacRobert (1967) Spherical Harmonics. An Elementary Treatise on Harmonic Functions with Applications. 3rd edition, International Series of Monographs in Pure and Applied Mathematics, Vol. 98, Pergamon Press, Oxford.
  • L. C. Maximon (1991) On the evaluation of the integral over the product of two spherical Bessel functions. J. Math. Phys. 32 (3), pp. 642–648.
  • R. Mehrem, J. T. Londergan, and M. H. Macfarlane (1991) Analytic expressions for integrals of products of spherical Bessel functions. J. Phys. A 24 (7), pp. 1435–1453.
  • G. F. Miller (1966) On the convergence of the Chebyshev series for functions possessing a singularity in the range of representation. SIAM J. Numer. Anal. 3 (3), pp. 390–409.
  • S. C. Milne (1985d) A q -analog of hypergeometric series well-poised in 𝑆𝑈 ( n ) and invariant G -functions. Adv. in Math. 58 (1), pp. 1–60.
  • 18: 18.18 Sums
    Legendre
    Laguerre
    Hermite
    Ultraspherical
    Hermite
    19: Bibliography T
  • J. D. Talman (1983) LSFBTR: A subroutine for calculating spherical Bessel transforms. Comput. Phys. Comm. 30 (1), pp. 93–99.
  • N. M. Temme (1979b) The asymptotic expansion of the incomplete gamma functions. SIAM J. Math. Anal. 10 (4), pp. 757–766.
  • N. M. Temme (1990b) Uniform asymptotic expansions of a class of integrals in terms of modified Bessel functions, with application to confluent hypergeometric functions. SIAM J. Math. Anal. 21 (1), pp. 241–261.
  • N. M. Temme (1994b) Computational aspects of incomplete gamma functions with large complex parameters. In Approximation and Computation. A Festschrift in Honor of Walter Gautschi, R. V. M. Zahar (Ed.), International Series of Numerical Mathematics, Vol. 119, pp. 551–562.
  • I. J. Thompson and A. R. Barnett (1986) Coulomb and Bessel functions of complex arguments and order. J. Comput. Phys. 64 (2), pp. 490–509.
  • 20: Bibliography C
  • B. C. Carlson and G. S. Rushbrooke (1950) On the expansion of a Coulomb potential in spherical harmonics. Proc. Cambridge Philos. Soc. 46, pp. 626–633.
  • B. C. Carlson (2008) Power series for inverse Jacobian elliptic functions. Math. Comp. 77 (263), pp. 1615–1621.
  • T. M. Cherry (1948) Expansions in terms of parabolic cylinder functions. Proc. Edinburgh Math. Soc. (2) 8, pp. 50–65.
  • J. P. Coleman and A. J. Monaghan (1983) Chebyshev expansions for the Bessel function J n ( z ) in the complex plane. Math. Comp. 40 (161), pp. 343–366.
  • R. M. Corless, D. J. Jeffrey, and D. E. Knuth (1997) A sequence of series for the Lambert W function. In Proceedings of the 1997 International Symposium on Symbolic and Algebraic Computation (Kihei, HI), pp. 197–204.