About the Project

asymptotic expansions as ϵ→0

AdvancedHelp

(0.013 seconds)

21—30 of 140 matching pages

21: 10.21 Zeros
10.21.22 ρ ν ( t ) ν k = 0 α k ν 2 k / 3 ,
10.21.27 σ ν ( t ) ν k = 0 α k ν 2 k / 3 ,
10.21.36 j ν , m ν k = 0 α k ν 2 k / 3 ,
22: 8.18 Asymptotic Expansions of I x ( a , b )
8.18.3 I x ( a , b ) = Γ ( a + b ) Γ ( a ) ( k = 0 n 1 d k F k + O ( a n ) F 0 ) ,
8.18.9 I x ( a , b ) 1 2 erfc ( η b / 2 ) + 1 2 π ( a + b ) ( x x 0 ) a ( 1 x 1 x 0 ) b k = 0 ( 1 ) k c k ( η ) ( a + b ) k ,
23: 2.5 Mellin Transform Methods
2.5.17 f ( t ) s = 0 a s t α s , t 0 + ,
2.5.18 h ( t ) exp ( i κ t p ) s = 0 b s t β s , t + ,
2.5.44 h ( ζ ) n = 0 b n Γ ( 1 β n ) ζ β n 1 + n = 0 ( ζ ) n n ! h ( n + 1 ) , ζ 0 + .
2.5.48 h ( ζ ) ( ln ζ ) k = 0 ζ k k ! + k = 0 ψ ( k + 1 ) ζ k k ! , ζ 0 + .
24: 9.12 Scorer Functions
9.12.25 Gi ( z ) 1 π z k = 0 ( 3 k ) ! k ! ( 3 z 3 ) k , | ph z | 1 3 π δ ,
9.12.27 Hi ( z ) 1 π z k = 0 ( 3 k ) ! k ! ( 3 z 3 ) k , | ph ( z ) | 2 3 π δ ,
9.12.30 0 z Gi ( t ) d t 1 π ln z + 2 γ + ln 3 3 π 1 π k = 1 ( 3 k 1 ) ! k ! ( 3 z 3 ) k , | ph z | 1 3 π δ .
9.12.31 0 z Hi ( t ) d t 1 π ln z + 2 γ + ln 3 3 π + 1 π k = 1 ( 1 ) k 1 ( 3 k 1 ) ! k ! ( 3 z 3 ) k , | ph z | 2 3 π δ ,
25: 2.6 Distributional Methods
2.6.6 S ( x ) 2 π 3 s = 0 ( 1 ) s ( 1 3 s ) x s ( 1 / 3 ) , x .
2.6.7 S ( x ) 2 π 3 s = 0 ( 1 ) s ( 1 3 s ) x s ( 1 / 3 ) s = 1 3 s ( s 1 ) ! 2 5 ( 3 s 1 ) x s ;
2.6.9 f ( t ) s = 0 a s t s α , t + ,
2.6.31 f ( t ) e i c t s = 0 a s t s α , t + ,
2.6.32 0 f ( t ) ( t + z ) ρ d t , ρ > 0 ,
26: 12.14 The Function W ( a , x )
12.14.23 s 1 ( a , x ) + i s 2 ( a , x ) r = 0 ( i ) r ( 1 2 + i a ) 2 r 2 r r ! x 2 r .
12.14.26 W ( 1 2 μ 2 , μ t 2 ) 2 1 2 e 1 4 π μ 2 l ( μ ) ( t 2 1 ) 1 4 ( sin σ s = 0 ( 1 ) s 𝒜 2 s ( t ) μ 4 s + cos σ s = 0 ( 1 ) s 𝒜 2 s + 1 ( t ) μ 4 s + 2 ) ,
12.14.29 l ( μ ) 2 1 4 μ 1 2 s = 0 l s μ 4 s ,
12.14.34 W ( 1 2 μ 2 , μ t 2 ) l ( μ ) ( t 2 + 1 ) 1 4 ( cos σ ¯ s = 0 ( 1 ) s u ¯ 2 s ( t ) ( t 2 + 1 ) 3 s μ 4 s sin σ ¯ s = 0 ( 1 ) s u ¯ 2 s + 1 ( t ) ( t 2 + 1 ) 3 s + 3 2 μ 4 s + 2 ) ,
12.14.35 W ( 1 2 μ 2 , μ t 2 ) μ 2 l ( μ ) ( t 2 + 1 ) 1 4 ( sin σ ¯ s = 0 ( 1 ) s v ¯ 2 s ( t ) ( t 2 + 1 ) 3 s μ 4 s + cos σ ¯ s = 0 ( 1 ) s v ¯ 2 s + 1 ( t ) ( t 2 + 1 ) 3 s + 3 2 μ 4 s + 2 ) ,
27: 28.16 Asymptotic Expansions for Large q
§28.16 Asymptotic Expansions for Large q
Let s = 2 m + 1 , m = 0 , 1 , 2 , , and ν be fixed with m < ν < m + 1 . …
28.16.1 λ ν ( h 2 ) 2 h 2 + 2 s h 1 8 ( s 2 + 1 ) 1 2 7 h ( s 3 + 3 s ) 1 2 12 h 2 ( 5 s 4 + 34 s 2 + 9 ) 1 2 17 h 3 ( 33 s 5 + 410 s 3 + 405 s ) 1 2 20 h 4 ( 63 s 6 + 1260 s 4 + 2943 s 2 + 486 ) 1 2 25 h 5 ( 527 s 7 + 15617 s 5 + 69001 s 3 + 41607 s ) + .
28: 30.9 Asymptotic Approximations and Expansions
30.9.1 λ n m ( γ 2 ) γ 2 + γ q + β 0 + β 1 γ 1 + β 2 γ 2 + ,
30.9.4 λ n m ( γ 2 ) 2 q | γ | + c 0 + c 1 | γ | 1 + c 2 | γ | 2 + ,
29: 11.11 Asymptotic Expansions of Anger–Weber Functions
11.11.8 𝐀 ν ( λ ν ) 1 π k = 0 ( 2 k ) ! a k ( λ ) ν 2 k + 1 , ν , | ph ν | π δ ,
11.11.10 𝐀 ν ( λ ν ) 1 π k = 0 ( 2 k ) ! a k ( λ ) ν 2 k + 1 , ν , | ph ν | π δ .
When ν is real and positive, all of (11.11.10)–(11.11.17) can be regarded as special cases of two asymptotic expansions given in Olver (1997b, pp. 352–360) for 𝐀 ν ( λ ν ) as ν + , one being uniform for 0 < λ 1 , and the other being uniform for λ 1 . … Lastly, corresponding asymptotic approximations and expansions for 𝐉 ν ( λ ν ) and 𝐄 ν ( λ ν ) , with 0 < λ < 1 or λ > 1 , follow from (11.10.15) and (11.10.16) and the corresponding asymptotic expansions for the Bessel functions J ν ( z ) and Y ν ( z ) ; see §10.19(ii). …
30: 12.11 Zeros
12.11.4 u a , s 2 1 2 μ ( p 0 ( α ) + p 1 ( α ) μ 4 + p 2 ( α ) μ 8 + ) ,
12.11.7 u a , s 2 1 2 μ ( q 0 ( β ) + q 1 ( β ) μ 4 + q 2 ( β ) μ 8 + ) ,