About the Project

Sears’ balanced 4ϕ3 transformation

AdvancedHelp

(0.003 seconds)

21—30 of 569 matching pages

21: Bibliography O
  • F. Oberhettinger and T. P. Higgins (1961) Tables of Lebedev, Mehler and Generalized Mehler Transforms. Mathematical Note Technical Report 246, Boeing Scientific Research Lab, Seattle.
  • F. Oberhettinger (1990) Tables of Fourier Transforms and Fourier Transforms of Distributions. Springer-Verlag, Berlin.
  • F. Oberhettinger (1972) Tables of Bessel Transforms. Springer-Verlag, Berlin-New York.
  • F. W. J. Olver (1970) A paradox in asymptotics. SIAM J. Math. Anal. 1 (4), pp. 533–534.
  • F. W. J. Olver (1997a) Asymptotic solutions of linear ordinary differential equations at an irregular singularity of rank unity. Methods Appl. Anal. 4 (4), pp. 375–403.
  • 22: 32.2 Differential Equations
    They are distinct modulo Möbius (bilinear) transformations
    z d f 2 d z = f 2 f 4 ( f 3 f 1 ) + ( 1 2 μ 4 ) f 2 + μ 2 f 4 ,
    z d f 4 d z = f 4 f 2 ( f 1 f 3 ) + ( 1 2 μ 2 ) f 4 + μ 4 f 2 ,
    where μ 1 , μ 2 , μ 3 , μ 4 are constants, f 1 , f 2 , f 3 , f 4 are functions of z , with …
    β = 1 4 b ,
    23: 31.2 Differential Equations
    F -Homotopic Transformations
    By composing these three steps, there result 2 3 = 8 possible transformations of the dependent variable (including the identity transformation) that preserve the form of (31.2.1).
    Homographic Transformations
    Composite Transformations
    There are 8 24 = 192 automorphisms of equation (31.2.1) by compositions of F -homotopic and homographic transformations. …
    24: 19.22 Quadratic Transformations
    §19.22 Quadratic Transformations
    Bartky’s Transformation
    Descending Gauss transformations include, as special cases, transformations of complete integrals into complete integrals; ascending Landen transformations do not. …
    25: 7.7 Integral Representations
    7.7.7 x e a 2 t 2 ( b 2 / t 2 ) d t = π 4 a ( e 2 a b erfc ( a x + ( b / x ) ) + e 2 a b erfc ( a x ( b / x ) ) ) , x > 0 , | ph a | < 1 4 π .
    7.7.8 0 e a 2 t 2 ( b 2 / t 2 ) d t = π 2 a e 2 a b , | ph a | < 1 4 π , | ph b | < 1 4 π .
    7.7.13 f ( z ) = ( 2 π ) 3 / 2 2 π i c i c + i ζ s Γ ( s ) Γ ( s + 1 2 ) Γ ( s + 3 4 ) Γ ( 1 4 s ) d s ,
    7.7.14 g ( z ) = ( 2 π ) 3 / 2 2 π i c i c + i ζ s Γ ( s ) Γ ( s + 1 2 ) Γ ( s + 1 4 ) Γ ( 3 4 s ) d s .
    In (7.7.13) and (7.7.14) the integration paths are straight lines, ζ = 1 16 π 2 z 4 , and c is a constant such that 0 < c < 1 4 in (7.7.13), and 0 < c < 3 4 in (7.7.14). …
    26: 22.6 Elementary Identities
    22.6.5 sn ( 2 z , k ) = 2 sn ( z , k ) cn ( z , k ) dn ( z , k ) 1 k 2 sn 4 ( z , k ) ,
    22.6.6 cn ( 2 z , k ) = cn 2 ( z , k ) sn 2 ( z , k ) dn 2 ( z , k ) 1 k 2 sn 4 ( z , k ) = cn 4 ( z , k ) k 2 sn 4 ( z , k ) 1 k 2 sn 4 ( z , k ) ,
    22.6.7 dn ( 2 z , k ) = dn 2 ( z , k ) k 2 sn 2 ( z , k ) cn 2 ( z , k ) 1 k 2 sn 4 ( z , k ) = dn 4 ( z , k ) + k 2 k 2 sn 4 ( z , k ) 1 k 2 sn 4 ( z , k ) .
    §22.6(iv) Rotation of Argument (Jacobi’s Imaginary Transformation)
    Table 22.6.1: Jacobi’s imaginary transformation of Jacobian elliptic functions.
    sn ( i z , k ) = i sc ( z , k ) dc ( i z , k ) = dn ( z , k )
    27: Bibliography P
  • J. B. Parkinson (1969) Optical properties of layer antiferromagnets with K 2 NiF 4 structure. J. Phys. C: Solid State Physics 2 (11), pp. 2012–2021.
  • E. Petropoulou (2000) Bounds for ratios of modified Bessel functions. Integral Transform. Spec. Funct. 9 (4), pp. 293–298.
  • A. Pinkus and S. Zafrany (1997) Fourier Series and Integral Transforms. Cambridge University Press, Cambridge.
  • W. H. Press and S. A. Teukolsky (1990) Elliptic integrals. Computers in Physics 4 (1), pp. 92–96.
  • A. P. Prudnikov, Yu. A. Brychkov, and O. I. Marichev (1992a) Integrals and Series: Direct Laplace Transforms, Vol. 4. Gordon and Breach Science Publishers, New York.
  • 28: 16.15 Integral Representations and Integrals
    16.15.1 F 1 ( α ; β , β ; γ ; x , y ) = Γ ( γ ) Γ ( α ) Γ ( γ α ) 0 1 u α 1 ( 1 u ) γ α 1 ( 1 u x ) β ( 1 u y ) β d u , α > 0 , ( γ α ) > 0 ,
    16.15.2 F 2 ( α ; β , β ; γ , γ ; x , y ) = Γ ( γ ) Γ ( γ ) Γ ( β ) Γ ( β ) Γ ( γ β ) Γ ( γ β ) 0 1 0 1 u β 1 v β 1 ( 1 u ) γ β 1 ( 1 v ) γ β 1 ( 1 u x v y ) α d u d v , γ > β > 0 , γ > β > 0 ,
    16.15.4 F 4 ( α , β ; γ , γ ; x ( 1 y ) , y ( 1 x ) ) = Γ ( γ ) Γ ( γ ) Γ ( α ) Γ ( β ) Γ ( γ α ) Γ ( γ β ) 0 1 0 1 u α 1 v β 1 ( 1 u ) γ α 1 ( 1 v ) γ β 1 ( 1 u x ) γ + γ α 1 ( 1 v y ) γ + γ β 1 ( 1 u x v y ) α + β γ γ + 1 d u d v , γ > α > 0 , γ > β > 0 .
    For inverse Laplace transforms of Appell functions see Prudnikov et al. (1992b, §3.40).
    29: Bibliography N
  • D. Naylor (1989) On an integral transform involving a class of Mathieu functions. SIAM J. Math. Anal. 20 (6), pp. 1500–1513.
  • D. Naylor (1990) On an asymptotic expansion of the Kontorovich-Lebedev transform. Applicable Anal. 39 (4), pp. 249–263.
  • D. Naylor (1996) On an asymptotic expansion of the Kontorovich-Lebedev transform. Methods Appl. Anal. 3 (1), pp. 98–108.
  • G. Nemes (2015b) On the large argument asymptotics of the Lommel function via Stieltjes transforms. Asymptot. Anal. 91 (3-4), pp. 265–281.
  • E. Neuman (2004) Inequalities involving Bessel functions of the first kind. JIPAM. J. Inequal. Pure Appl. Math. 5 (4), pp. Article 94, 4 pp. (electronic).
  • 30: 15.8 Transformations of Variable
    §15.8 Transformations of Variable
    §15.8(i) Linear Transformations
    §15.8(iii) Quadratic Transformations
    §15.8(v) Cubic Transformations
    Ramanujan’s Cubic Transformation