About the Project

Fej%C3%A9r%E2%80%99s

AdvancedHelp

(0.004 seconds)

21—30 of 610 matching pages

21: Bibliography D
  • N. G. de Bruijn (1981) Pólya’s Theory of Counting. In Applied Combinatorial Mathematics, E. F. Beckenbach (Ed.), pp. 144–184.
  • K. Dilcher (1987b) Irreducibility of certain generalized Bernoulli polynomials belonging to quadratic residue class characters. J. Number Theory 25 (1), pp. 72–80.
  • J. Dougall (1907) On Vandermonde’s theorem, and some more general expansions. Proc. Edinburgh Math. Soc. 25, pp. 114–132.
  • B. A. Dubrovin (1981) Theta functions and non-linear equations. Uspekhi Mat. Nauk 36 (2(218)), pp. 11–80 (Russian).
  • T. M. Dunster (1997) Error analysis in a uniform asymptotic expansion for the generalised exponential integral. J. Comput. Appl. Math. 80 (1), pp. 127–161.
  • 22: 12.14 The Function W ( a , x )
    Other expansions, involving cos ( 1 4 x 2 ) and sin ( 1 4 x 2 ) , can be obtained from (12.4.3) to (12.4.6) by replacing a by i a and z by x e π i / 4 ; see Miller (1955, p. 80), and also (12.14.15) and (12.14.16). … Then as x Here 𝒜 s ( t ) is as in §12.10(ii), σ is defined by … uniformly for t [ 1 + δ , ) , with ζ , ϕ ( ζ ) , A s ( ζ ) , and B s ( ζ ) as in §12.10(vii). … and ξ ¯ and the coefficients u ¯ s ( t ) and v ¯ s ( t ) as in §12.10(v). …
    23: Publications
  • D. W. Lozier, B. R. Miller and B. V. Saunders (1999) Design of a Digital Mathematical Library for Science, Technology and Education, Proceedings of the IEEE Forum on Research and Technology Advances in Digital Libraries (IEEE ADL ’99, Baltimore, Maryland, May 19, 1999). PDF
  • Q. Wang, B. V. Saunders and S. Ressler (2007) Dissemination of 3D Visualizations of Complex Function Data for the NIST Digital Library of Mathematical Functions, CODATA Data Science Journal 6 (2007), pp. S146–S154. PDF
  • B. I. Schneider, B. R. Miller and B. V. Saunders (2018) NIST’s Digital Library of Mathematial Functions, Physics Today 71, 2, 48 (2018), pp. 48–53. PDF
  • 24: 22.7 Landen Transformations
    25: 36.5 Stokes Sets
    ( Φ ( U ) ( s j ( 𝐱 ) , t j ( 𝐱 ) ; 𝐱 ) Φ ( U ) ( s μ ( 𝐱 ) , t μ ( 𝐱 ) ; 𝐱 ) ) = 0 ,
    where j denotes a real critical point (36.4.1) or (36.4.2), and μ denotes a critical point with complex t or s , t , connected with j by a steepest-descent path (that is, a path where Φ = constant ) in complex t or ( s , t ) space. …
    36.5.4 80 x 5 40 x 4 55 x 3 + 5 x 2 + 20 x 1 = 0 ,
    When | X | > X 2 the Stokes set Y S ( X ) is given by
    36.5.17 Y S ( X ) = Y ( u , | X | ) ,
    26: Bibliography P
  • R. B. Paris (1991) The asymptotic behaviour of Pearcey’s integral for complex variables. Proc. Roy. Soc. London Ser. A 432 (1886), pp. 391–426.
  • A. Pinkus and S. Zafrany (1997) Fourier Series and Integral Transforms. Cambridge University Press, Cambridge.
  • S. Porubský (1998) Voronoi type congruences for Bernoulli numbers. In Voronoi’s Impact on Modern Science. Book I, P. Engel and H. Syta (Eds.),
  • T. Prellberg and A. L. Owczarek (1995) Stacking models of vesicles and compact clusters. J. Statist. Phys. 80 (3–4), pp. 755–779.
  • W. H. Press and S. A. Teukolsky (1990) Elliptic integrals. Computers in Physics 4 (1), pp. 92–96.
  • 27: 2.3 Integrals of a Real Variable
    §2.3(ii) Watson’s Lemma
    §2.3(iii) Laplace’s Method
    where the coefficients b s are defined by the expansion … For error bounds for Watson’s lemma and Laplace’s method see Boyd (1993) and Olver (1997b, Chapter 3). … The desired uniform expansion is then obtained formally as in Watson’s lemma and Laplace’s method. …
    28: 34.13 Methods of Computation
    Methods of computation for 3 j and 6 j symbols include recursion relations, see Schulten and Gordon (1975a), Luscombe and Luban (1998), and Edmonds (1974, pp. 42–45, 48–51, 97–99); summation of single-sum expressions for these symbols, see Varshalovich et al. (1988, §§8.2.6, 9.2.1) and Fang and Shriner (1992); evaluation of the generalized hypergeometric functions of unit argument that represent these symbols, see Srinivasa Rao and Venkatesh (1978) and Srinivasa Rao (1981). …
    29: 9.18 Tables
  • Miller (1946) tabulates Ai ( x ) , Ai ( x ) for x = 20 ( .01 ) 2 ; log 10 Ai ( x ) , Ai ( x ) / Ai ( x ) for x = 0 ( .1 ) 25 ( 1 ) 75 ; Bi ( x ) , Bi ( x ) for x = 10 ( .1 ) 2.5 ; log 10 Bi ( x ) , Bi ( x ) / Bi ( x ) for x = 0 ( .1 ) 10 ; M ( x ) , N ( x ) , θ ( x ) , ϕ ( x ) (respectively F ( x ) , G ( x ) , χ ( x ) , ψ ( x ) ) for x = 80 ( 1 ) 30 ( .1 ) 0 . Precision is generally 8D; slightly less for some of the auxiliary functions. Extracts from these tables are included in Abramowitz and Stegun (1964, Chapter 10), together with some auxiliary functions for large arguments.

  • Yakovleva (1969) tabulates Fock’s functions U ( x ) π Bi ( x ) , U ( x ) = π Bi ( x ) , V ( x ) π Ai ( x ) , V ( x ) = π Ai ( x ) for x = 9 ( .001 ) 9 . Precision is 7S.

  • 30: 1.11 Zeros of Polynomials
    Horner’s Scheme
    Extended Horner Scheme