About the Project

Bernoulli and Euler numbers and polynomials

AdvancedHelp

(0.003 seconds)

31—40 of 42 matching pages

31: 24.12 Zeros
§24.12(i) Bernoulli Polynomials: Real Zeros
§24.12(iii) Complex Zeros
For complex zeros of Bernoulli and Euler polynomials, see Delange (1987) and Dilcher (1988). A related topic is the irreducibility of Bernoulli and Euler polynomials. …
§24.12(iv) Multiple Zeros
32: 25.2 Definition and Expansions
25.2.9 ζ ( s ) = k = 1 N 1 k s + N 1 s s 1 1 2 N s + k = 1 n ( s + 2 k 2 2 k 1 ) B 2 k 2 k N 1 s 2 k ( s + 2 n 2 n + 1 ) N B ~ 2 n + 1 ( x ) x s + 2 n + 1 d x , s > 2 n ; n , N = 1 , 2 , 3 , .
25.2.10 ζ ( s ) = 1 s 1 + 1 2 + k = 1 n ( s + 2 k 2 2 k 1 ) B 2 k 2 k ( s + 2 n 2 n + 1 ) 1 B ~ 2 n + 1 ( x ) x s + 2 n + 1 d x , s > 2 n , n = 1 , 2 , 3 , .
33: Bibliography D
  • K. Dilcher (1987a) Asymptotic behaviour of Bernoulli, Euler, and generalized Bernoulli polynomials. J. Approx. Theory 49 (4), pp. 321–330.
  • K. Dilcher (1987b) Irreducibility of certain generalized Bernoulli polynomials belonging to quadratic residue class characters. J. Number Theory 25 (1), pp. 72–80.
  • K. Dilcher (1988) Zeros of Bernoulli, generalized Bernoulli and Euler polynomials. Mem. Amer. Math. Soc. 73 (386), pp. iv+94.
  • K. Dilcher (1996) Sums of products of Bernoulli numbers. J. Number Theory 60 (1), pp. 23–41.
  • K. Dilcher (2002) Bernoulli Numbers and Confluent Hypergeometric Functions. In Number Theory for the Millennium, I (Urbana, IL, 2000), pp. 343–363.
  • 34: Bibliography B
  • B. C. Berndt (1975a) Character analogues of the Poisson and Euler-MacLaurin summation formulas with applications. J. Number Theory 7 (4), pp. 413–445.
  • B. C. Berndt (1975b) Periodic Bernoulli numbers, summation formulas and applications. In Theory and Application of Special Functions (Proc. Advanced Sem., Math. Res. Center, Univ. Wisconsin, Madison, Wis., 1975), pp. 143–189.
  • J. Brillhart (1969) On the Euler and Bernoulli polynomials. J. Reine Angew. Math. 234, pp. 45–64.
  • T. Burić and N. Elezović (2011) Bernoulli polynomials and asymptotic expansions of the quotient of gamma functions. J. Comput. Appl. Math. 235 (11), pp. 3315–3331.
  • P. L. Butzer, M. Hauss, and M. Leclerc (1992) Bernoulli numbers and polynomials of arbitrary complex indices. Appl. Math. Lett. 5 (6), pp. 83–88.
  • 35: Bibliography H
  • M. Hauss (1997) An Euler-Maclaurin-type formula involving conjugate Bernoulli polynomials and an application to ζ ( 2 m + 1 ) . Commun. Appl. Anal. 1 (1), pp. 15–32.
  • K. Horata (1989) An explicit formula for Bernoulli numbers. Rep. Fac. Sci. Technol. Meijo Univ. 29, pp. 1–6.
  • K. Horata (1991) On congruences involving Bernoulli numbers and irregular primes. II. Rep. Fac. Sci. Technol. Meijo Univ. 31, pp. 1–8.
  • F. T. Howard (1996a) Explicit formulas for degenerate Bernoulli numbers. Discrete Math. 162 (1-3), pp. 175–185.
  • I. Huang and S. Huang (1999) Bernoulli numbers and polynomials via residues. J. Number Theory 76 (2), pp. 178–193.
  • 36: 3.5 Quadrature
    For the Bernoulli numbers B m see §24.2(i). … The remainder is given by …
    Gauss–Legendre Formula
    The p n ( x ) are the monic Hermite polynomials H n ( x ) 18.3). …
    37: 3.11 Approximation Techniques
    §3.11(i) Minimax Polynomial Approximations
    Suppose a function f ( x ) is approximated by the polynomialFor splines based on Bernoulli and Euler polynomials, see §24.17(ii). For many applications a spline function is a more adaptable approximating tool than the Lagrange interpolation polynomial involving a comparable number of parameters; see §3.3(i), where a single polynomial is used for interpolating f ( x ) on the complete interval [ a , b ] . …
    38: Bibliography E
  • D. Elliott (1971) Uniform asymptotic expansions of the Jacobi polynomials and an associated function. Math. Comp. 25 (114), pp. 309–315.
  • D. Elliott (1998) The Euler-Maclaurin formula revisited. J. Austral. Math. Soc. Ser. B 40 (E), pp. E27–E76 (electronic).
  • R. Ernvall (1979) Generalized Bernoulli numbers, generalized irregular primes, and class number. Ann. Univ. Turku. Ser. A I 178, pp. 1–72.
  • T. Estermann (1959) On the representations of a number as a sum of three squares. Proc. London Math. Soc. (3) 9, pp. 575–594.
  • L. Euler (1768) Institutiones Calculi Integralis. Opera Omnia (1), Vol. 11, pp. 110–113.
  • 39: Errata
  • Equation (5.17.5)
    5.17.5 Ln G ( z + 1 ) 1 4 z 2 + z Ln Γ ( z + 1 ) ( 1 2 z ( z + 1 ) + 1 12 ) ln z ln A + k = 1 B 2 k + 2 2 k ( 2 k + 1 ) ( 2 k + 2 ) z 2 k

    For consistency we have replaced Ln z by ln z .

  • These additions were facilitated by an extension of the scheme for reference numbers; with “_” introducing intermediate numbers. …
  • Chapter 35 Functions of Matrix Argument

    The generalized hypergeometric function of matrix argument F q p ( a 1 , , a p ; b 1 , , b q ; 𝐓 ) , was linked inadvertently as its single variable counterpart F q p ( a 1 , , a p ; b 1 , , b q ; 𝐓 ) . Furthermore, the Jacobi function of matrix argument P ν ( γ , δ ) ( 𝐓 ) , and the Laguerre function of matrix argument L ν ( γ ) ( 𝐓 ) , were also linked inadvertently (and incorrectly) in terms of the single variable counterparts given by P ν ( γ , δ ) ( 𝐓 ) , and L ν ( γ ) ( 𝐓 ) . In order to resolve these inconsistencies, these functions now link correctly to their respective definitions.

  • Equations (25.11.6), (25.11.19), and (25.11.20)

    Originally all six integrands in these equations were incorrect because their numerators contained the function B ~ 2 ( x ) . The correct function is B ~ 2 ( x ) B 2 2 . The new equations are:

    25.11.6 ζ ( s , a ) = 1 a s ( 1 2 + a s 1 ) s ( s + 1 ) 2 0 B ~ 2 ( x ) B 2 ( x + a ) s + 2 d x , s 1 , s > 1 , a > 0

    Reported 2016-05-08 by Clemens Heuberger.

    25.11.19 ζ ( s , a ) = ln a a s ( 1 2 + a s 1 ) a 1 s ( s 1 ) 2 + s ( s + 1 ) 2 0 ( B ~ 2 ( x ) B 2 ) ln ( x + a ) ( x + a ) s + 2 d x ( 2 s + 1 ) 2 0 B ~ 2 ( x ) B 2 ( x + a ) s + 2 d x , s > 1 , s 1 , a > 0

    Reported 2016-06-27 by Gergő Nemes.

    25.11.20 ( 1 ) k ζ ( k ) ( s , a ) = ( ln a ) k a s ( 1 2 + a s 1 ) + k ! a 1 s r = 0 k 1 ( ln a ) r r ! ( s 1 ) k r + 1 s ( s + 1 ) 2 0 ( B ~ 2 ( x ) B 2 ) ( ln ( x + a ) ) k ( x + a ) s + 2 d x + k ( 2 s + 1 ) 2 0 ( B ~ 2 ( x ) B 2 ) ( ln ( x + a ) ) k 1 ( x + a ) s + 2 d x k ( k 1 ) 2 0 ( B ~ 2 ( x ) B 2 ) ( ln ( x + a ) ) k 2 ( x + a ) s + 2 d x , s > 1 , s 1 , a > 0

    Reported 2016-06-27 by Gergő Nemes.

  • Equation (5.17.5)
    5.17.5 Ln G ( z + 1 ) 1 4 z 2 + z Ln Γ ( z + 1 ) ( 1 2 z ( z + 1 ) + 1 12 ) Ln z ln A + k = 1 B 2 k + 2 2 k ( 2 k + 1 ) ( 2 k + 2 ) z 2 k

    Originally the term z Ln Γ ( z + 1 ) was incorrectly stated as z Γ ( z + 1 ) .

    Reported 2013-08-01 by Gergő Nemes and subsequently by Nick Jones on December 11, 2013.

  • 40: Bibliography F
  • J. L. Fields and Y. L. Luke (1963a) Asymptotic expansions of a class of hypergeometric polynomials with respect to the order. II. J. Math. Anal. Appl. 7 (3), pp. 440–451.
  • J. L. Fields and Y. L. Luke (1963b) Asymptotic expansions of a class of hypergeometric polynomials with respect to the order. J. Math. Anal. Appl. 6 (3), pp. 394–403.
  • S. Fillebrown (1992) Faster computation of Bernoulli numbers. J. Algorithms 13 (3), pp. 431–445.
  • P. Flajolet and B. Salvy (1998) Euler sums and contour integral representations. Experiment. Math. 7 (1), pp. 15–35.
  • Y. V. Fyodorov (2005) Introduction to the Random Matrix Theory: Gaussian Unitary Ensemble and Beyond. In Recent Perspectives in Random Matrix Theory and Number Theory, London Math. Soc. Lecture Note Ser., Vol. 322, pp. 31–78.