About the Project

Airy transform

AdvancedHelp

(0.002 seconds)

11—20 of 28 matching pages

11: Bibliography N
  • D. Naylor (1989) On an integral transform involving a class of Mathieu functions. SIAM J. Math. Anal. 20 (6), pp. 1500–1513.
  • D. Naylor (1990) On an asymptotic expansion of the Kontorovich-Lebedev transform. Applicable Anal. 39 (4), pp. 249–263.
  • D. Naylor (1996) On an asymptotic expansion of the Kontorovich-Lebedev transform. Methods Appl. Anal. 3 (1), pp. 98–108.
  • National Bureau of Standards (1958) Integrals of Airy Functions. National Bureau of Standards Applied Mathematics Series, U.S. Government Printing Office, Washington, D.C..
  • G. Nemes (2021) Proofs of two conjectures on the real zeros of the cylinder and Airy functions. SIAM J. Math. Anal. 53 (4), pp. 4328–4349.
  • 12: Bibliography
  • G. B. Airy (1838) On the intensity of light in the neighbourhood of a caustic. Trans. Camb. Phil. Soc. 6, pp. 379–402.
  • G. B. Airy (1849) Supplement to a paper “On the intensity of light in the neighbourhood of a caustic”. Trans. Camb. Phil. Soc. 8, pp. 595–599.
  • N. I. Akhiezer (1988) Lectures on Integral Transforms. Translations of Mathematical Monographs, Vol. 70, American Mathematical Society, Providence, RI.
  • J. R. Albright and E. P. Gavathas (1986) Integrals involving Airy functions. J. Phys. A 19 (13), pp. 2663–2665.
  • G. E. Andrews (1972) Summations and transformations for basic Appell series. J. London Math. Soc. (2) 4, pp. 618–622.
  • 13: Bibliography C
  • R. G. Campos (1995) A quadrature formula for the Hankel transform. Numer. Algorithms 9 (2), pp. 343–354.
  • S. M. Candel (1981) An algorithm for the Fourier-Bessel transform. Comput. Phys. Comm. 23 (4), pp. 343–353.
  • B. C. Carlson (1976) Quadratic transformations of Appell functions. SIAM J. Math. Anal. 7 (2), pp. 291–304.
  • N. B. Christensen (1990) Optimized fast Hankel transform filters. Geophysical Prospecting 38 (5), pp. 545–568.
  • E. T. Copson (1963) On the asymptotic expansion of Airy’s integral. Proc. Glasgow Math. Assoc. 6, pp. 113–115.
  • 14: 15.12 Asymptotic Approximations
    15.12.9 ( z + 1 ) 3 λ / 2 ( 2 λ ) c 1 𝐅 ( a + λ , b + 2 λ c ; z ) = λ 1 / 3 ( e π i ( a c + λ + ( 1 / 3 ) ) Ai ( e 2 π i / 3 λ 2 / 3 β 2 ) + e π i ( c a λ ( 1 / 3 ) ) Ai ( e 2 π i / 3 λ 2 / 3 β 2 ) ) ( a 0 ( ζ ) + O ( λ 1 ) ) + λ 2 / 3 ( e π i ( a c + λ + ( 2 / 3 ) ) Ai ( e 2 π i / 3 λ 2 / 3 β 2 ) + e π i ( c a λ ( 2 / 3 ) ) Ai ( e 2 π i / 3 λ 2 / 3 β 2 ) ) ( a 1 ( ζ ) + O ( λ 1 ) ) ,
    For Ai ( z ) see §9.2, and for further information and an extension to an asymptotic expansion see Olde Daalhuis (2003b). … By combination of the foregoing results of this subsection with the linear transformations of §15.8(i) and the connection formulas of §15.10(ii), similar asymptotic approximations for F ( a + e 1 λ , b + e 2 λ ; c + e 3 λ ; z ) can be obtained with e j = ± 1 or 0 , j = 1 , 2 , 3 . …
    15: 32.10 Special Function Solutions
    §32.10(ii) Second Painlevé Equation
    P II  has solutions expressible in terms of Airy functions (§9.2) iff …
    32.10.5 ϕ ( z ) = C 1 Ai ( 2 1 / 3 z ) + C 2 Bi ( 2 1 / 3 z ) ,
    Solutions for other values of α are derived from w ( z ; ± 1 2 ) by application of the Bäcklund transformations (32.7.1) and (32.7.2). …
    16: Bibliography M
  • A. J. MacLeod (1994) Computation of inhomogeneous Airy functions. J. Comput. Appl. Math. 53 (1), pp. 109–116.
  • P. Martín, R. Pérez, and A. L. Guerrero (1992) Two-point quasi-fractional approximations to the Airy function Ai ( x ) . J. Comput. Phys. 99 (2), pp. 337–340.
  • J. P. McClure and R. Wong (1978) Explicit error terms for asymptotic expansions of Stieltjes transforms. J. Inst. Math. Appl. 22 (2), pp. 129–145.
  • J. W. Miles (1980) The Second Painlevé Transcendent: A Nonlinear Airy Function. In Mechanics Today, Vol. 5, pp. 297–313.
  • A. E. Milne, P. A. Clarkson, and A. P. Bassom (1997) Bäcklund transformations and solution hierarchies for the third Painlevé equation. Stud. Appl. Math. 98 (2), pp. 139–194.
  • 17: Errata
    The specific updates to Chapter 18 include some results for general orthogonal polynomials including quadratic transformations, uniqueness of orthogonality measure and completeness, moments, continued fractions, and some special classes of orthogonal polynomials. …
  • Section 1.14

    There have been extensive changes in the notation used for the integral transforms defined in §1.14. These changes are applied throughout the DLMF. The following table summarizes the changes.

    Transform New Abbreviated Old
    Notation Notation Notation
    Fourier ( f ) ( x ) f ( x )
    Fourier Cosine c ( f ) ( x ) c f ( x )
    Fourier Sine s ( f ) ( x ) s f ( x )
    Laplace ( f ) ( s ) f ( s ) ( f ( t ) ; s )
    Mellin ( f ) ( s ) f ( s ) ( f ; s )
    Hilbert ( f ) ( s ) f ( s ) ( f ; s )
    Stieltjes 𝒮 ( f ) ( s ) 𝒮 f ( s ) 𝒮 ( f ; s )

    Previously, for the Fourier, Fourier cosine and Fourier sine transforms, either temporary local notations were used or the Fourier integrals were written out explicitly.

  • Subsection 1.16(vii)

    Several changes have been made to

    1. (i)

      make consistent use of the Fourier transform notations ( f ) , ( ϕ ) and ( u ) where f is a function of one real variable, ϕ is a test function of n variables associated with tempered distributions, and u is a tempered distribution (see (1.14.1), (1.16.29) and (1.16.35));

    2. (ii)

      introduce the partial differential operator 𝐃 in (1.16.30);

    3. (iii)

      clarify the definition (1.16.32) of the partial differential operator P ( 𝐃 ) ; and

    4. (iv)

      clarify the use of P ( 𝐃 ) and P ( 𝐱 ) in (1.16.33), (1.16.34), (1.16.36) and (1.16.37).

  • Subsection 1.16(viii)

    An entire new Subsection 1.16(viii) Fourier Transforms of Special Distributions, was contributed by Roderick Wong.

  • Section 17.9

    The title was changed from Transformations of Higher ϕ r r Functions to Further Transformations of ϕ r r + 1 Functions.

  • 18: Bibliography E
  • U. T. Ehrenmark (1995) The numerical inversion of two classes of Kontorovich-Lebedev transform by direct quadrature. J. Comput. Appl. Math. 61 (1), pp. 43–72.
  • A. Erdélyi, W. Magnus, F. Oberhettinger, and F. G. Tricomi (1954a) Tables of Integral Transforms. Vol. I. McGraw-Hill Book Company, Inc., New York-Toronto-London.
  • A. Erdélyi, W. Magnus, F. Oberhettinger, and F. G. Tricomi (1954b) Tables of Integral Transforms. Vol. II. McGraw-Hill Book Company, Inc., New York-Toronto-London.
  • W. N. Everitt (1982) On the transformation theory of ordinary second-order linear symmetric differential expressions. Czechoslovak Math. J. 32(107) (2), pp. 275–306.
  • H. Exton (1983) The asymptotic behaviour of the inhomogeneous Airy function Hi ( z ) . Math. Chronicle 12, pp. 99–104.
  • 19: Bibliography Z
  • R. Zanovello (1977) Integrali di funzioni di Anger, Weber ed Airy-Hardy. Rend. Sem. Mat. Univ. Padova 58, pp. 275–285 (Italian).
  • A. H. Zemanian (1987) Distribution Theory and Transform Analysis, An Introduction and Generalized Functions with Applications. Dover, New York.
  • Q. Zheng (1997) Generalized Watson Transforms and Applications to Group Representations. Ph.D. Thesis, University of Vermont, Burlington,VT.
  • Ya. M. Zhileĭkin and A. B. Kukarkin (1995) A fast Fourier-Bessel transform algorithm. Zh. Vychisl. Mat. i Mat. Fiz. 35 (7), pp. 1128–1133 (Russian).
  • 20: 12.10 Uniform Asymptotic Expansions for Large Parameter
    With the transformationsThe turning points can be included if expansions in terms of Airy functions are used instead of elementary functions (§2.8(iii)). …
    Modified Expansions
    §12.10(viii) Negative a , < x < 2 a . Expansions in Terms of Airy Functions