About the Project

.1994年世界杯小组分组_『网址:687.vii』2018世界杯直播咪咕_b5p6v3_2022年11月30日7时57分10秒_z9fzftt9n.cc

AdvancedHelp

(0.006 seconds)

11—20 of 814 matching pages

11: 9.18 Tables
  • Miller (1946) tabulates Ai ( x ) , Ai ( x ) for x = 20 ( .01 ) 2 ; log 10 Ai ( x ) , Ai ( x ) / Ai ( x ) for x = 0 ( .1 ) 25 ( 1 ) 75 ; Bi ( x ) , Bi ( x ) for x = 10 ( .1 ) 2.5 ; log 10 Bi ( x ) , Bi ( x ) / Bi ( x ) for x = 0 ( .1 ) 10 ; M ( x ) , N ( x ) , θ ( x ) , ϕ ( x ) (respectively F ( x ) , G ( x ) , χ ( x ) , ψ ( x ) ) for x = 80 ( 1 ) 30 ( .1 ) 0 . Precision is generally 8D; slightly less for some of the auxiliary functions. Extracts from these tables are included in Abramowitz and Stegun (1964, Chapter 10), together with some auxiliary functions for large arguments.

  • Zhang and Jin (1996, p. 338) tabulates 0 x Ai ( t ) d t and 0 x Bi ( t ) d t for x = 10 ( .2 ) 10 to 8D or 8S.

  • National Bureau of Standards (1958) tabulates A 0 ( x ) π Hi ( x ) and A 0 ( x ) π Hi ( x ) for x = 0 ( .01 ) 1 ( .02 ) 5 ( .05 ) 11 and 1 / x = 0.01 ( .01 ) 0.1 ; 0 x A 0 ( t ) d t for x = 0.5 , 1 ( 1 ) 11 . Precision is 8D.

  • Gil et al. (2003c) tabulates the only positive zero of Gi ( z ) , the first 10 negative real zeros of Gi ( z ) and Gi ( z ) , and the first 10 complex zeros of Gi ( z ) , Gi ( z ) , Hi ( z ) , and Hi ( z ) . Precision is 11 or 12S.

  • §9.18(vii) Generalized Airy Functions
    12: 24.2 Definitions and Generating Functions
    24.2.3 t e x t e t 1 = n = 0 B n ( x ) t n n ! , | t | < 2 π .
    24.2.8 2 e x t e t + 1 = n = 0 E n ( x ) t n n ! , | t | < π ,
    Table 24.2.4: Euler numbers E n .
    n E n
    Table 24.2.5: Coefficients b n , k of the Bernoulli polynomials B n ( x ) = k = 0 n b n , k x k .
    k
    Table 24.2.6: Coefficients e n , k of the Euler polynomials E n ( x ) = k = 0 n e n , k x k .
    k
    13: Errata
  • References

    Some references were added to §§7.25(ii), 7.25(iii), 7.25(vi), 8.28(ii), and to ¶Products (in §10.74(vii)) and §10.77(ix).

  • Version 1.0.21 (December 15, 2018)
    Version 1.0.20 (September 15, 2018)
    Version 1.0.19 (June 22, 2018)
    Version 1.0.18 (March 27, 2018)
    14: Bibliography E
  • A. R. Edmonds (1974) Angular Momentum in Quantum Mechanics. 3rd printing, with corrections, 2nd edition, Princeton University Press, Princeton, NJ.
  • U. T. Ehrenmark (1995) The numerical inversion of two classes of Kontorovich-Lebedev transform by direct quadrature. J. Comput. Appl. Math. 61 (1), pp. 43–72.
  • Á. Elbert and A. Laforgia (1997) An upper bound for the zeros of the derivative of Bessel functions. Rend. Circ. Mat. Palermo (2) 46 (1), pp. 123–130.
  • G. A. Evans and J. R. Webster (1999) A comparison of some methods for the evaluation of highly oscillatory integrals. J. Comput. Appl. Math. 112 (1-2), pp. 55–69.
  • H. Exton (1983) The asymptotic behaviour of the inhomogeneous Airy function Hi ( z ) . Math. Chronicle 12, pp. 99–104.
  • 15: 8.21 Generalized Sine and Cosine Integrals
    For 𝗃 n ( z ) see §10.47(ii). …
    §8.21(vii) Auxiliary Functions
    8.21.22 f ( a , z ) = 0 sin t ( t + z ) 1 a d t ,
    8.21.23 g ( a , z ) = 0 cos t ( t + z ) 1 a d t .
    8.21.24 f ( a , z ) = z a 2 0 ( ( 1 + i t ) a 1 + ( 1 i t ) a 1 ) e z t d t ,
    16: 18.30 Associated OP’s
    where p n ( x ; c ) is given by (18.30.2) and (18.30.3), with A n , B n , and C n as in (18.9.2). …where the generalized hypergeometric function F 3 4 is defined by (16.2.1). For corresponding corecursive associated Jacobi polynomials, corecursive associated polynomials being discussed in §18.30(vii), see Letessier (1995). … F ( z ) and F n ( z ) of (18.30.23) and (18.30.24) are, also, precisely those of (18.2.34) and (18.2.35), now expressed via the traditional, A n , B n , C n coefficients, rather than the monic, α n , β n , recursion coefficients. …
    §18.30(vii) Corecursive and Associated Monic Orthogonal Polynomials
    17: Bibliography L
  • Soo-Y. Lee (1980) The inhomogeneous Airy functions, Gi ( z )  and Hi ( z ) . J. Chem. Phys. 72 (1), pp. 332–336.
  • S. Lewanowicz (1991) Evaluation of Bessel function integrals with algebraic singularities. J. Comput. Appl. Math. 37 (1-3), pp. 101–112.
  • E. R. Love (1972b) Two index laws for fractional integrals and derivatives. J. Austral. Math. Soc. 14, pp. 385–410.
  • J. Lund (1985) Bessel transforms and rational extrapolation. Numer. Math. 47 (1), pp. 1–14.
  • J. N. Lyness (1985) Integrating some infinite oscillating tails. J. Comput. Appl. Math. 12/13, pp. 109–117.
  • 18: Bibliography O
  • K. Okamoto (1987a) Studies on the Painlevé equations. I. Sixth Painlevé equation P VI . Ann. Mat. Pura Appl. (4) 146, pp. 337–381.
  • F. W. J. Olver (1951) A further method for the evaluation of zeros of Bessel functions and some new asymptotic expansions for zeros of functions of large order. Proc. Cambridge Philos. Soc. 47, pp. 699–712.
  • F. W. J. Olver (1952) Some new asymptotic expansions for Bessel functions of large orders. Proc. Cambridge Philos. Soc. 48 (3), pp. 414–427.
  • F. W. J. Olver (1959) Uniform asymptotic expansions for Weber parabolic cylinder functions of large orders. J. Res. Nat. Bur. Standards Sect. B 63B, pp. 131–169.
  • J. M. Ortega and W. C. Rheinboldt (1970) Iterative Solution of Nonlinear Equations in Several Variables. Academic Press, New York.
  • 19: DLMF Project News
    error generating summary
    20: Antony Ross Barnett
     2018) was Senior Research Fellow in the Mathematics Department, University of Waikato, Hamilton, New Zealand. …