About the Project

.世界杯预测神_『网址:687.vii』世界杯预选赛完整视频_b5p6v3_y0aqso2ym

AdvancedHelp

(0.003 seconds)

21—30 of 127 matching pages

21: 1.15 Summability Methods
1.15.50 𝐼 α f ( x ) = k = 0 k ! Γ ( k + α + 1 ) a k x k + α .
§1.15(vii) Fractional Derivatives
1.15.51 𝐷 α f ( x ) = d n d x n 𝐼 n α f ( x ) ,
1.15.52 𝐷 k 𝐼 α = 𝐷 n 𝐼 α + n k , k = 1 , 2 , , n .
1.15.53 𝐷 α 𝐷 β = 𝐷 α + β .
22: 11.10 Anger–Weber Functions
§11.10(vii) Special Values
11.10.25 𝐉 ν ( 0 ) = sin ( π ν ) π ν , 𝐄 ν ( 0 ) = 1 cos ( π ν ) π ν .
11.10.26 𝐄 0 ( z ) = 𝐇 0 ( z ) , 𝐄 1 ( z ) = 2 π 𝐇 1 ( z ) .
11.10.29 𝐉 n ( z ) = J n ( z ) , n .
23: 13.2 Definitions and Basic Properties
§13.2(vii) Connection Formulas
13.2.39 M ( a , b , z ) = e z M ( b a , b , z ) ,
13.2.40 U ( a , b , z ) = z 1 b U ( a b + 1 , 2 b , z ) .
13.2.41 1 Γ ( b ) M ( a , b , z ) = e a π i Γ ( b a ) U ( a , b , z ) + e ± ( b a ) π i Γ ( a ) e z U ( b a , b , e ± π i z ) .
13.2.42 U ( a , b , z ) = Γ ( 1 b ) Γ ( a b + 1 ) M ( a , b , z ) + Γ ( b 1 ) Γ ( a ) z 1 b M ( a b + 1 , 2 b , z ) .
24: 28.4 Fourier Series
§28.4(vii) Asymptotic Forms for Large m
28.4.24 A 2 m 2 n ( q ) A 0 2 n ( q ) = ( 1 ) m ( m ! ) 2 ( q 4 ) m π ( 1 + O ( m 1 ) ) w II ( 1 2 π ; a 2 n ( q ) , q ) ,
28.4.25 A 2 m + 1 2 n + 1 ( q ) A 1 2 n + 1 ( q ) = ( 1 ) m + 1 ( ( 1 2 ) m + 1 ) 2 ( q 4 ) m + 1 2 ( 1 + O ( m 1 ) ) w II ( 1 2 π ; a 2 n + 1 ( q ) , q ) ,
28.4.26 B 2 m + 1 2 n + 1 ( q ) B 1 2 n + 1 ( q ) = ( 1 ) m ( ( 1 2 ) m + 1 ) 2 ( q 4 ) m + 1 2 ( 1 + O ( m 1 ) ) w I ( 1 2 π ; b 2 n + 1 ( q ) , q ) ,
28.4.27 B 2 m 2 n + 2 ( q ) B 2 2 n + 2 ( q ) = ( 1 ) m ( m ! ) 2 ( q 4 ) m q π ( 1 + O ( m 1 ) ) w I ( 1 2 π ; b 2 n + 2 ( q ) , q ) .
25: 12.14 The Function W ( a , x )
§12.14(vii) Relations to Other Functions
12.14.13 W ( 0 , ± x ) = 2 5 4 π x ( J 1 4 ( 1 4 x 2 ) J 1 4 ( 1 4 x 2 ) ) ,
12.14.14 d d x W ( 0 , ± x ) = 2 9 4 x π x ( J 3 4 ( 1 4 x 2 ) ± J 3 4 ( 1 4 x 2 ) ) .
12.14.15 w 1 ( a , x ) = e 1 4 i x 2 M ( 1 4 1 2 i a , 1 2 , 1 2 i x 2 ) = e 1 4 i x 2 M ( 1 4 + 1 2 i a , 1 2 , 1 2 i x 2 ) ,
uniformly for t [ 1 + δ , ) , with ζ , ϕ ( ζ ) , A s ( ζ ) , and B s ( ζ ) as in §12.10(vii). …
26: 1.9 Calculus of a Complex Variable
§1.9(vii) Inversion of Limits
1.9.66 z p , q = m = 0 p n = 0 q ζ m , n .
1.9.69 a b n = 0 | f n ( t ) | d t < ,
1.9.71 a b n = 0 f n ( t ) d t = n = 0 a b f n ( t ) d t .
27: 8.9 Continued Fractions
8.9.2 z a e z Γ ( a , z ) = z 1 1 + ( 1 a ) z 1 1 + z 1 1 + ( 2 a ) z 1 1 + 2 z 1 1 + ( 3 a ) z 1 1 + 3 z 1 1 + , | ph z | < π .
28: 33.13 Complex Variable and Parameters
The functions F ( η , ρ ) , G ( η , ρ ) , and H ± ( η , ρ ) may be extended to noninteger values of by generalizing ( 2 + 1 ) ! = Γ ( 2 + 2 ) , and supplementing (33.6.5) by a formula derived from (33.2.8) with U ( a , b , z ) expanded via (13.2.42). … The quantities C ( η ) , σ ( η ) , and R , given by (33.2.6), (33.2.10), and (33.4.1), respectively, must be defined consistently so that
33.13.1 C ( η ) = 2 e i σ ( η ) ( π η / 2 ) Γ ( + 1 i η ) / Γ ( 2 + 2 ) ,
33.13.2 R = ( 2 + 1 ) C ( η ) / C 1 ( η ) .
29: 34.3 Basic Properties: 3 j Symbol
§34.3(vii) Relations to Legendre Polynomials and Spherical Harmonics
34.3.19 P l 1 ( cos θ ) P l 2 ( cos θ ) = l ( 2 l + 1 ) ( l 1 l 2 l 0 0 0 ) 2 P l ( cos θ ) ,
34.3.20 Y l 1 , m 1 ( θ , ϕ ) Y l 2 , m 2 ( θ , ϕ ) = l , m ( ( 2 l 1 + 1 ) ( 2 l 2 + 1 ) ( 2 l + 1 ) 4 π ) 1 2 ( l 1 l 2 l m 1 m 2 m ) Y l , m ( θ , ϕ ) ¯ ( l 1 l 2 l 0 0 0 ) ,
34.3.21 0 π P l 1 ( cos θ ) P l 2 ( cos θ ) P l 3 ( cos θ ) sin θ d θ = 2 ( l 1 l 2 l 3 0 0 0 ) 2 ,
34.3.22 0 2 π 0 π Y l 1 , m 1 ( θ , ϕ ) Y l 2 , m 2 ( θ , ϕ ) Y l 3 , m 3 ( θ , ϕ ) sin θ d θ d ϕ = ( ( 2 l 1 + 1 ) ( 2 l 2 + 1 ) ( 2 l 3 + 1 ) 4 π ) 1 2 ( l 1 l 2 l 3 0 0 0 ) ( l 1 l 2 l 3 m 1 m 2 m 3 ) .
30: 3.6 Linear Difference Equations
In practice, however, problems of severe instability often arise and in §§3.6(ii)3.6(vii) we show how these difficulties may be overcome. …
§3.6(vii) Linear Difference Equations of Other Orders
3.6.17 a n w n + 1 b n w n = d n .
3.6.18 a n , k w n + k + a n , k 1 w n + k 1 + + a n , 0 w n = d n ,