About the Project

.%E5%A8%81%E5%B0%BC%E6%96%AF%E8%B5%8C%E5%9C%BA%E3%80%8Ewn4.com%E3%80%8F%E6%BE%B3%E9%97%A8%E5%A8%81%E5%B0%BC%E6%96%AF%E8%B5%8C%E5%9C%BA.%E5%A8%81%E5%B0%BC%E6%96%AF%E7%BA%BF%E4%B8%8A%E8%B5%8C%E5%9C%BA.%E7%9C%9F%E7%9A%84%E5%A8%81%E5%B0%BC%E6%96%AF%E8%B5%8C%E5%9C%BA.%E5%A8%81%E5%B0%BC%E6%96%AF%E5%A8%B1%E4%B9%90.%E5%A8%81%E5%B0%BC%E6%96%AF%E7%9C%9F%E4%BA%BA.%E5%A8%81%E5%B0%BC%E6%96%AF%E6%A3%8B%E7%89%8C-w6n2c9o.2022%E5%B9%B411%E6%9C%8829%E6%97%A54%E6%97%B651%E5%88%8618%E7%A7%92.q000s0soc.com

AdvancedHelp

(0.077 seconds)

11—20 of 715 matching pages

11: DLMF Project News
error generating summary
12: 26.14 Permutations: Order Notation
β–ΊThe set 𝔖 n 26.13) can be viewed as the collection of all ordered lists of elements of { 1 , 2 , , n } : { Οƒ ⁑ ( 1 ) ⁒ Οƒ ⁑ ( 2 ) ⁒ β‹― ⁒ Οƒ ⁑ ( n ) } . As an example, 35247816 is an element of 𝔖 8 . The inversion number is the number of pairs of elements for which the larger element precedes the smaller: … β–ΊThe permutation 35247816 has two descents: 52 and 81 . …For example, maj ( 35247816 ) = 2 + 6 = 8 . … β–ΊIn this subsection S ⁑ ( n , k ) is again the Stirling number of the second kind (§26.8), and B m is the m th Bernoulli number (§24.2(i)). …
13: 25.6 Integer Arguments
β–Ί
ΞΆ ⁑ ( 4 ) = Ο€ 4 90 ,
β–Ί
25.6.2 ΞΆ ⁑ ( 2 ⁒ n ) = ( 2 ⁒ Ο€ ) 2 ⁒ n 2 ⁒ ( 2 ⁒ n ) ! ⁒ | B 2 ⁒ n | , n = 1 , 2 , 3 , .
β–Ί
25.6.3 ΢ ⁑ ( n ) = B n + 1 n + 1 , n = 1 , 2 , 3 , .
β–Ί
25.6.6 ΞΆ ⁑ ( 2 ⁒ k + 1 ) = ( 1 ) k + 1 ⁒ ( 2 ⁒ Ο€ ) 2 ⁒ k + 1 2 ⁒ ( 2 ⁒ k + 1 ) ! ⁒ 0 1 B 2 ⁒ k + 1 ⁑ ( t ) ⁒ cot ⁑ ( Ο€ ⁒ t ) ⁒ d t , k = 1 , 2 , 3 , .
β–Ί
25.6.15 ΞΆ ⁑ ( 2 ⁒ n ) = ( 1 ) n + 1 ⁒ ( 2 ⁒ Ο€ ) 2 ⁒ n 2 ⁒ ( 2 ⁒ n ) ! ⁒ ( 2 ⁒ n ⁒ ΞΆ ⁑ ( 1 2 ⁒ n ) ( ψ ⁑ ( 2 ⁒ n ) ln ⁑ ( 2 ⁒ Ο€ ) ) ⁒ B 2 ⁒ n ) .
14: Bibliography M
β–Ί
  • W. Magnus, F. Oberhettinger, and R. P. Soni (1966) Formulas and Theorems for the Special Functions of Mathematical Physics. 3rd edition, Springer-Verlag, New York-Berlin.
  • β–Ί
  • O. I. Marichev (1984) On the Representation of Meijer’s G -Function in the Vicinity of Singular Unity. In Complex Analysis and Applications ’81 (Varna, 1981), pp. 383–398.
  • β–Ί
  • R. Metzler, J. Klafter, and J. Jortner (1999) Hierarchies and logarithmic oscillations in the temporal relaxation patterns of proteins and other complex systems. Proc. Nat. Acad. Sci. U .S. A. 96 (20), pp. 11085–11089.
  • β–Ί
  • D. S. Moak (1981) The q -analogue of the Laguerre polynomials. J. Math. Anal. Appl. 81 (1), pp. 20–47.
  • β–Ί
  • E. W. Montroll (1964) Lattice Statistics. In Applied Combinatorial Mathematics, E. F. Beckenbach (Ed.), University of California Engineering and Physical Sciences Extension Series, pp. 96–143.
  • 15: Bibliography S
    β–Ί
  • J. B. Seaborn (1991) Hypergeometric Functions and Their Applications. Texts in Applied Mathematics, Vol. 8, Springer-Verlag, New York.
  • β–Ί
  • J. Shao and P. Hänggi (1998) Decoherent dynamics of a two-level system coupled to a sea of spins. Phys. Rev. Lett. 81 (26), pp. 5710–5713.
  • β–Ί
  • A. Sidi (2012a) Euler-Maclaurin expansions for integrals with arbitrary algebraic endpoint singularities. Math. Comp. 81 (280), pp. 2159–2173.
  • β–Ί
  • S. L. Skorokhodov (1985) On the calculation of complex zeros of the modified Bessel function of the second kind. Dokl. Akad. Nauk SSSR 280 (2), pp. 296–299.
  • β–Ί
  • R. Spigler, M. Vianello, and F. Locatelli (1999) Liouville-Green-Olver approximations for complex difference equations. J. Approx. Theory 96 (2), pp. 301–322.
  • 16: Bibliography D
    β–Ί
  • S. D. Daymond (1955) The principal frequencies of vibrating systems with elliptic boundaries. Quart. J. Mech. Appl. Math. 8 (3), pp. 361–372.
  • β–Ί
  • N. G. de Bruijn (1937) Integralen voor de ΞΆ -functie van Riemann. Mathematica (Zutphen) B5, pp. 170–180 (Dutch).
  • β–Ί
  • P. G. L. Dirichlet (1837) Beweis des Satzes, dass jede unbegrenzte arithmetische Progression, deren erstes Glied und Differenz ganze Zahlen ohne gemeinschaftlichen Factor sind, unendlich viele Primzahlen enthält. Abhandlungen der Königlich Preussischen Akademie der Wissenschaften von 1837, pp. 45–81 (German).
  • β–Ί
  • C. F. Dunkl and Y. Xu (2001) Orthogonal Polynomials of Several Variables. Encyclopedia of Mathematics and its Applications, Vol. 81, Cambridge University Press, Cambridge.
  • β–Ί
  • G. V. Dunne and K. Rao (2000) Lamé instantons. J. High Energy Phys. 2000 (1), pp. Paper 19, 8.
  • 17: Bibliography K
    β–Ί
  • K. W. J. Kadell (1994) A proof of the q -Macdonald-Morris conjecture for B ⁒ C n . Mem. Amer. Math. Soc. 108 (516), pp. vi+80.
  • β–Ί
  • N. D. Kazarinoff (1988) Special functions and the Bieberbach conjecture. Amer. Math. Monthly 95 (8), pp. 689–696.
  • β–Ί
  • A. V. Kitaev (1994) Elliptic asymptotics of the first and second Painlevé transcendents. Uspekhi Mat. Nauk 49 (1(295)), pp. 77–140 (Russian).
  • β–Ί
  • Y. Kivshar and B. Luther-Davies (1998) Dark optical solitons: Physics and applications. Physics Reports 298 (2-3), pp. 81–197.
  • β–Ί
  • T. H. Koornwinder (1977) The addition formula for Laguerre polynomials. SIAM J. Math. Anal. 8 (3), pp. 535–540.
  • 18: 10.41 Asymptotic Expansions for Large Order
    β–ΊThe curve E 1 ⁒ B ⁒ E 2 in the z -plane is the upper boundary of the domain 𝐊 depicted in Figure 10.20.3 and rotated through an angle 1 2 ⁒ Ο€ . Thus B is the point z = c , where c is given by (10.20.18). … β–ΊThe series (10.41.3)–(10.41.6) can also be regarded as generalized asymptotic expansions for large | z | . … β–ΊSimilar analysis can be developed for the uniform asymptotic expansions in terms of Airy functions given in §10.20. … β–ΊIt needs to be noted that the results (10.41.14) and (10.41.15) do not apply when z 0 + or equivalently ΞΆ + . …
    19: 1.11 Zeros of Polynomials
    β–ΊSet z = w 1 3 ⁒ a to reduce f ⁑ ( z ) = z 3 + a ⁒ z 2 + b ⁒ z + c to g ⁑ ( w ) = w 3 + p ⁒ w + q , with p = ( 3 ⁒ b a 2 ) / 3 , q = ( 2 ⁒ a 3 9 ⁒ a ⁒ b + 27 ⁒ c ) / 27 . … β–Ί f ⁑ ( z ) = z 3 6 ⁒ z 2 + 6 ⁒ z 2 , g ⁑ ( w ) = w 3 6 ⁒ w 6 , A = 3 ⁒ 4 3 , B = 3 ⁒ 2 3 . … β–Ί
    p = ( 3 ⁒ a 2 + 8 ⁒ b ) / 8 ,
    β–Ί
    q = ( a 3 4 ⁒ a ⁒ b + 8 ⁒ c ) / 8 ,
    β–ΊResolvent cubic is z 3 + 12 ⁒ z 2 + 20 ⁒ z + 9 = 0 with roots ΞΈ 1 = 1 , ΞΈ 2 = 1 2 ⁒ ( 11 + 85 ) , ΞΈ 3 = 1 2 ⁒ ( 11 85 ) , and ΞΈ 1 = 1 , ΞΈ 2 = 1 2 ⁒ ( 17 + 5 ) , ΞΈ 3 = 1 2 ⁒ ( 17 5 ) . …
    20: 1.3 Determinants, Linear Operators, and Spectral Expansions
    β–ΊThe cofactor A j ⁒ k of a j ⁒ k is … β–ΊThe determinant of an upper or lower triangular, or diagonal, square matrix 𝐀 is the product of the diagonal elements det ( 𝐀 ) = i = 1 n a i ⁒ i . … β–ΊLet a j , k be defined for all integer values of j and k , and 𝐷 n [ a j , k ] denote the ( 2 ⁒ n + 1 ) × ( 2 ⁒ n + 1 ) determinant … β–ΊSquare matices can be seen as linear operators because 𝐀 ⁒ ( Ξ± ⁒ 𝐚 + Ξ² ⁒ 𝐛 ) = Ξ± ⁒ 𝐀 ⁒ 𝐚 + Ξ² ⁒ 𝐀 ⁒ 𝐛 for all Ξ± , Ξ² β„‚ and 𝐚 , 𝐛 𝐄 n , the space of all n -dimensional vectors. … β–ΊThe adjoint of a matrix 𝐀 is the matrix 𝐀 such that ⟨ 𝐀 ⁒ 𝐚 , 𝐛 ⟩ = ⟨ 𝐚 , 𝐀 ⁒ 𝐛 ⟩ for all 𝐚 , 𝐛 𝐄 n . …