About the Project

.%E5%A5%A5%E4%B9%94%E4%BA%9A%E4%B8%96%E7%95%8C%E6%9D%AF%E6%89%91%E6%95%91%E3%80%8E%E7%BD%91%E5%9D%80%3Amxsty.cc%E3%80%8F.%E4%B8%96%E7%95%8C%E6%9D%AF%E4%BA%9A%E8%BF%90%E4%BC%9A.m4x5s2-2022%E5%B9%B411%E6%9C%8829%E6%97%A54%E6%97%B650%E5%88%8610%E7%A7%92eosssivzt

AdvancedHelp

(0.039 seconds)

11—20 of 742 matching pages

11: DLMF Project News
error generating summary
12: Bibliography D
  • S. D. Daymond (1955) The principal frequencies of vibrating systems with elliptic boundaries. Quart. J. Mech. Appl. Math. 8 (3), pp. 361–372.
  • K. Dilcher (1988) Zeros of Bernoulli, generalized Bernoulli and Euler polynomials. Mem. Amer. Math. Soc. 73 (386), pp. iv+94.
  • B. Döring (1966) Complex zeros of cylinder functions. Math. Comp. 20 (94), pp. 215–222.
  • G. V. Dunne and K. Rao (2000) Lamé instantons. J. High Energy Phys. 2000 (1), pp. Paper 19, 8.
  • L. Durand (1978) Product formulas and Nicholson-type integrals for Jacobi functions. I. Summary of results. SIAM J. Math. Anal. 9 (1), pp. 76–86.
  • 13: 34.5 Basic Properties: 6 j Symbol
    34.5.1 { j 1 j 2 j 3 0 j 3 j 2 } = ( 1 ) J ( ( 2 j 2 + 1 ) ( 2 j 3 + 1 ) ) 1 2 ,
    34.5.2 { j 1 j 2 j 3 1 2 j 3 1 2 j 2 + 1 2 } = ( 1 ) J ( ( j 1 + j 3 j 2 ) ( j 1 + j 2 j 3 + 1 ) ( 2 j 2 + 1 ) ( 2 j 2 + 2 ) 2 j 3 ( 2 j 3 + 1 ) ) 1 2 ,
    34.5.3 { j 1 j 2 j 3 1 2 j 3 1 2 j 2 1 2 } = ( 1 ) J ( ( j 2 + j 3 j 1 ) ( j 1 + j 2 + j 3 + 1 ) 2 j 2 ( 2 j 2 + 1 ) 2 j 3 ( 2 j 3 + 1 ) ) 1 2 ,
    34.5.4 { j 1 j 2 j 3 1 j 3 1 j 2 1 } = ( 1 ) J ( J ( J + 1 ) ( J 2 j 1 ) ( J 2 j 1 1 ) ( 2 j 2 1 ) 2 j 2 ( 2 j 2 + 1 ) ( 2 j 3 1 ) 2 j 3 ( 2 j 3 + 1 ) ) 1 2 ,
    34.5.5 { j 1 j 2 j 3 1 j 3 1 j 2 } = ( 1 ) J ( 2 ( J + 1 ) ( J 2 j 1 ) ( J 2 j 2 ) ( J 2 j 3 + 1 ) 2 j 2 ( 2 j 2 + 1 ) ( 2 j 2 + 2 ) ( 2 j 3 1 ) 2 j 3 ( 2 j 3 + 1 ) ) 1 2 ,
    14: Bibliography S
  • H. E. Salzer (1955) Orthogonal polynomials arising in the numerical evaluation of inverse Laplace transforms. Math. Tables Aids Comput. 9 (52), pp. 164–177.
  • J. Segura and A. Gil (1999) Evaluation of associated Legendre functions off the cut and parabolic cylinder functions. Electron. Trans. Numer. Anal. 9, pp. 137–146.
  • L. Shen (1981) The elliptical microstrip antenna with circular polarization. IEEE Trans. Antennas and Propagation 29 (1), pp. 9094.
  • K. Srinivasa Rao, V. Rajeswari, and C. B. Chiu (1989) A new Fortran program for the 9 - j angular momentum coefficient. Comput. Phys. Comm. 56 (2), pp. 231–248.
  • S. K. Suslov (2003) An Introduction to Basic Fourier Series. Developments in Mathematics, Vol. 9, Kluwer Academic Publishers, Dordrecht.
  • 15: Bibliography C
  • R. G. Campos (1995) A quadrature formula for the Hankel transform. Numer. Algorithms 9 (2), pp. 343–354.
  • B. C. Carlson (1978) Short proofs of three theorems on elliptic integrals. SIAM J. Math. Anal. 9 (3), pp. 524–528.
  • B. C. Carlson (1990) Landen Transformations of Integrals. In Asymptotic and Computational Analysis (Winnipeg, MB, 1989), R. Wong (Ed.), Lecture Notes in Pure and Appl. Math., Vol. 124, pp. 75–94.
  • T. S. Chihara and M. E. H. Ismail (1993) Extremal measures for a system of orthogonal polynomials. Constr. Approx. 9, pp. 111–119.
  • J. S. Christiansen and M. E. H. Ismail (2006) A moment problem and a family of integral evaluations. Trans. Amer. Math. Soc. 358 (9), pp. 4071–4097.
  • 16: 34.12 Physical Applications
    §34.12 Physical Applications
    The angular momentum coupling coefficients ( 3 j , 6 j , and 9 j symbols) are essential in the fields of nuclear, atomic, and molecular physics. … 3 j , 6 j , and 9 j symbols are also found in multipole expansions of solutions of the Laplace and Helmholtz equations; see Carlson and Rushbrooke (1950) and Judd (1976).
    17: 9 Airy and Related Functions
    Chapter 9 Airy and Related Functions
    18: 4.26 Integrals
    Extensive compendia of indefinite and definite integrals of trigonometric and inverse trigonometric functions include Apelblat (1983, pp. 48–109), Bierens de Haan (1939), Gradshteyn and Ryzhik (2000, Chapters 2–4), Gröbner and Hofreiter (1949, pp. 116–139), Gröbner and Hofreiter (1950, pp. 94–160), and Prudnikov et al. (1986a, §§1.5, 1.7, 2.5, 2.7).
    19: 23.6 Relations to Other Functions
    In this subsection 2 ω 1 , 2 ω 3 are any pair of generators of the lattice 𝕃 , and the lattice roots e 1 , e 2 , e 3 are given by (23.3.9). … Again, in Equations (23.6.16)–(23.6.26), 2 ω 1 , 2 ω 3 are any pair of generators of the lattice 𝕃 and e 1 , e 2 , e 3 are given by (23.3.9). … Also, 𝕃 1 , 𝕃 2 , 𝕃 3 are the lattices with generators ( 4 K , 2 i K ) , ( 2 K 2 i K , 2 K + 2 i K ) , ( 2 K , 4 i K ) , respectively. … Let z be on the perimeter of the rectangle with vertices 0 , 2 ω 1 , 2 ω 1 + 2 ω 3 , 2 ω 3 . … Let z be a point of different from e 1 , e 2 , e 3 , and define w by …
    20: 18.17 Integrals
    For the beta function B ( a , b ) see §5.12, and for the confluent hypergeometric function F 1 1 see (16.2.1) and Chapter 13. … For the confluent hypergeometric function F 1 1 see (16.2.1) and Chapter 13. … For the hypergeometric function F 1 2 see §§15.1 and 15.2(i). … For the generalized hypergeometric function F 2 2 see (16.2.1). … For further integrals, see Apelblat (1983, pp. 189–204), Erdélyi et al. (1954a, pp. 38–39, 9495, 170–176, 259–261, 324), Erdélyi et al. (1954b, pp. 42–44, 271–294), Gradshteyn and Ryzhik (2000, pp. 788–806), Gröbner and Hofreiter (1950, pp. 23–30), Marichev (1983, pp. 216–247), Oberhettinger (1972, pp. 64–67), Oberhettinger (1974, pp. 83–92), Oberhettinger (1990, pp. 44–47 and 152–154), Oberhettinger and Badii (1973, pp. 103–112), Prudnikov et al. (1986b, pp. 420–617), Prudnikov et al. (1992a, pp. 419–476), and Prudnikov et al. (1992b, pp. 280–308).