About the Project

%E6%B2%99%E5%B7%B4%E4%BD%93%E8%82%B2%E6%8A%95%E6%B3%A8%E5%B9%B3%E5%8F%B0,%E6%B2%99%E5%B7%B4%E4%BD%93%E8%82%B2%E5%AE%98%E7%BD%91,%E3%80%90%E6%B2%99%E5%B7%B4%E4%BD%93%E8%82%B2%E6%8A%95%E6%B3%A8%E7%BD%91%E5%9D%80%E2%88%B63399yule.com%E3%80%91%E6%B2%99%E5%B7%B4%E4%BD%93%E8%82%B2%E8%B5%8C%E7%90%83%E5%B9%B3%E5%8F%B0,%E6%B2%99%E5%B7%B4%E4%BD%93%E8%82%B2%E7%BB%B4%E5%9F%BA%E7%99%BE%E7%A7%91,%E6%B2%99%E5%B7%B4%E4%BD%93%E8%82%B2app,%E6%B2%99%E5%B7%B4%E4%BD%93%E8%82%B2%E6%98%AF%E4%BB%80%E4%B9%88,%E6%B2%99%E5%B7%B4%E4%BD%93%E8%82%B2api,%E6%B2%99%E5%B7%B4%E4%B9%B0%E7%90%83%E5%B9%B3%E5%8F%B0%E3%80%90%E8%B5%8C%E7%90%83%E7%BD%91%E7%AB%99%E2%88%B63399yule.com%E3%80%91

AdvancedHelp

Did you mean %E6%B2%99%E5%B7%B4%E4%BD%93%E8%82%B2%E6%8A%95%E6%B3%A8%E5%B9%B3%E5%8F%B0,%E6%B2%99%E5%B7%B4%E4%BD%93%E8%82%B2%E5%AE%98%E7%BD%91,%E3%80%90%E6%B2%99%E5%B7%B4%E4%BD%93%E8%82%B2%E6%8A%95%E6%B3%A8%E7%BD%91%E5%9D%80%E2%88%33929%E3%80%91%E6%B2%99%E5%B7%B4%E4%BD%93%E8%82%B2%E8%B5%8C%E7%90%83%E5%B9%B3%E5%8F%B0,%E6%B2%99%E5%B7%B4%E4%BD%93%E8%82%B2%E7%BB%B4%E5%9F%BA%E7%99%BE%E7%A7%91,%E6%B2%99%E5%B7%B4%E4%BD%93%E8%82%papp,%E6%B2%99%E5%B7%B4%E4%BD%93%E8%82%B2%E6%98%AF%E4%BB%80%E4%B9%88,%E6%B2%99%E5%B7%B4%E4%BD%93%E8%82%rapid,%E6%B2%99%E5%B7%B4%E4%B9%B0%E7%90%83%E5%B9%B3%E5%8F%B0%E3%80%90%E8%B5%8C%E7%90%83%E7%BD%91%E7%AB%99%E2%88%33929%E3%80%91 ?

(0.062 seconds)

1—10 of 729 matching pages

1: 34.13 Methods of Computation
β–ΊMethods of computation for 3 ⁒ j and 6 ⁒ j symbols include recursion relations, see Schulten and Gordon (1975a), Luscombe and Luban (1998), and Edmonds (1974, pp. 42–45, 48–51, 97–99); summation of single-sum expressions for these symbols, see Varshalovich et al. (1988, §§8.2.6, 9.2.1) and Fang and Shriner (1992); evaluation of the generalized hypergeometric functions of unit argument that represent these symbols, see Srinivasa Rao and Venkatesh (1978) and Srinivasa Rao (1981). β–ΊFor 9 ⁒ j symbols, methods include evaluation of the single-sum series (34.6.2), see Fang and Shriner (1992); evaluation of triple-sum series, see Varshalovich et al. (1988, §10.2.1) and Srinivasa Rao et al. (1989). …
2: Bibliography
β–Ί
  • W. A. Al-Salam and L. Carlitz (1959) Some determinants of Bernoulli, Euler and related numbers. Portugal. Math. 18, pp. 9199.
  • β–Ί
  • D. E. Amos (1990) Algorithm 683: A portable FORTRAN subroutine for exponential integrals of a complex argument. ACM Trans. Math. Software 16 (2), pp. 178–182.
  • β–Ί
  • G. E. Andrews (1974) Applications of basic hypergeometric functions. SIAM Rev. 16 (4), pp. 441–484.
  • β–Ί
  • T. M. Apostol (2006) Bernoulli’s power-sum formulas revisited. Math. Gaz. 90 (518), pp. 276–279.
  • β–Ί
  • M. J. Atia, A. Martínez-Finkelshtein, P. Martínez-González, and F. Thabet (2014) Quadratic differentials and asymptotics of Laguerre polynomials with varying complex parameters. J. Math. Anal. Appl. 416 (1), pp. 52–80.
  • 3: Publications
    β–Ί
  • D. W. Lozier, B. R. Miller and B. V. Saunders (1999) Design of a Digital Mathematical Library for Science, Technology and Education, Proceedings of the IEEE Forum on Research and Technology Advances in Digital Libraries (IEEE ADL ’99, Baltimore, Maryland, May 19, 1999). PDF
  • β–Ί
  • D. W. Lozier (2003) The NIST Digital Library of Mathematical Functions Project, Annals of Mathematics and Artificial Intelligence—Special Issue on Mathematical Knowledge Management, Vol. 38, Nos. 1–3, pp. 105–119. PDF
  • β–Ί
  • B. R. Miller and A. Youssef (2003) Technical Aspects of the Digital Library of Mathematical Functions, Annals of Mathematics and Artificial Intelligence—Special Issue on Mathematical Knowledge Management, Vol. 38, Nos. 1–3, pp. 121–136. PDF
  • 4: 18.13 Continued Fractions
    β–ΊSee also Cuyt et al. (2008, pp. 9199).
    5: Bibliography T
    β–Ί
  • Y. Takei (1995) On the connection formula for the first Painlevé equation—from the viewpoint of the exact WKB analysis. SΕ«rikaisekikenkyΕ«sho KōkyΕ«roku (931), pp. 70–99.
  • β–Ί
  • J. D. Talman (1983) LSFBTR: A subroutine for calculating spherical Bessel transforms. Comput. Phys. Comm. 30 (1), pp. 9399.
  • β–Ί
  • N. M. Temme (1983) The numerical computation of the confluent hypergeometric function U ⁒ ( a , b , z ) . Numer. Math. 41 (1), pp. 63–82.
  • β–Ί
  • N. M. Temme (1995b) Bernoulli polynomials old and new: Generalizations and asymptotics. CWI Quarterly 8 (1), pp. 47–66.
  • β–Ί
  • W. J. Thompson (1997) Atlas for Computing Mathematical Functions: An Illustrated Guide for Practitioners. John Wiley & Sons Inc., New York.
  • 6: Bibliography C
    β–Ί
  • L. G. Cabral-Rosetti and M. A. Sanchis-Lozano (2000) Generalized hypergeometric functions and the evaluation of scalar one-loop integrals in Feynman diagrams. J. Comput. Appl. Math. 115 (1-2), pp. 9399.
  • β–Ί
  • M. A. Chaudhry and S. M. Zubair (1994) Generalized incomplete gamma functions with applications. J. Comput. Appl. Math. 55 (1), pp. 99–124.
  • β–Ί
  • W. J. Cody (1965b) Chebyshev polynomial expansions of complete elliptic integrals. Math. Comp. 19 (90), pp. 249–259.
  • β–Ί
  • R. M. Corless, D. J. Jeffrey, and H. Rasmussen (1992) Numerical evaluation of Airy functions with complex arguments. J. Comput. Phys. 99 (1), pp. 106–114.
  • β–Ί
  • A. Cruz, J. Esparza, and J. Sesma (1991) Zeros of the Hankel function of real order out of the principal Riemann sheet. J. Comput. Appl. Math. 37 (1-3), pp. 89–99.
  • 7: Bibliography K
    β–Ί
  • K. W. J. Kadell (1994) A proof of the q -Macdonald-Morris conjecture for B ⁒ C n . Mem. Amer. Math. Soc. 108 (516), pp. vi+80.
  • β–Ί
  • E. H. Kaufman and T. D. Lenker (1986) Linear convergence and the bisection algorithm. Amer. Math. Monthly 93 (1), pp. 48–51.
  • β–Ί
  • R. B. Kearfott (1996) Algorithm 763: INTERVAL_ARITHMETIC: A Fortran 90 module for an interval data type. ACM Trans. Math. Software 22 (4), pp. 385–392.
  • β–Ί
  • D. E. Knuth (1992) Two notes on notation. Amer. Math. Monthly 99 (5), pp. 403–422.
  • β–Ί
  • T. H. Koornwinder and F. Bouzeffour (2011) Nonsymmetric Askey-Wilson polynomials as vector-valued polynomials. Appl. Anal. 90 (3-4), pp. 731–746.
  • 8: Bibliography N
    β–Ί
  • G. Nemes (2013c) Generalization of Binet’s Gamma function formulas. Integral Transforms Spec. Funct. 24 (8), pp. 597–606.
  • β–Ί
  • E. Neuman (1969a) Elliptic integrals of the second and third kinds. Zastos. Mat. 11, pp. 99–102.
  • β–Ί
  • N. Nielsen (1909) Der Eulersche Dilogarithmus und seine Verallgemeinerungen. Nova Acta Leopoldina 90, pp. 123–212.
  • β–Ί
  • V. Yu. Novokshënov (1985) The asymptotic behavior of the general real solution of the third Painlevé equation. Dokl. Akad. Nauk SSSR 283 (5), pp. 1161–1165 (Russian).
  • β–Ί
  • Numerical Recipes (commercial C, C++, Fortran 77, and Fortran 90 libraries)
  • 9: Bibliography I
    β–Ί
  • E. L. Ince (1940b) Further investigations into the periodic Lamé functions. Proc. Roy. Soc. Edinburgh 60, pp. 8399.
  • β–Ί
  • M. E. H. Ismail (2005) Classical and Quantum Orthogonal Polynomials in One Variable. Encyclopedia of Mathematics and its Applications, Vol. 98, Cambridge University Press, Cambridge.
  • β–Ί
  • M. E. H. Ismail (2009) Classical and Quantum Orthogonal Polynomials in One Variable. Encyclopedia of Mathematics and its Applications, Vol. 98, Cambridge University Press, Cambridge.
  • 10: Bibliography E
    β–Ί
  • Á. Elbert (2001) Some recent results on the zeros of Bessel functions and orthogonal polynomials. J. Comput. Appl. Math. 133 (1-2), pp. 65–83.
  • β–Ί
  • A. Erdélyi (1942b) The Fuchsian equation of second order with four singularities. Duke Math. J. 9 (1), pp. 48–58.
  • β–Ί
  • D. Erricolo and G. Carluccio (2013) Algorithm 934: Fortran 90 subroutines to compute Mathieu functions for complex values of the parameter. ACM Trans. Math. Softw. 40 (1), pp. 8:1–8:19.
  • β–Ί
  • D. Erricolo (2006) Algorithm 861: Fortran 90 subroutines for computing the expansion coefficients of Mathieu functions using Blanch’s algorithm. ACM Trans. Math. Software 32 (4), pp. 622–634.
  • β–Ί
  • H. Exton (1983) The asymptotic behaviour of the inhomogeneous Airy function Hi ⁒ ( z ) . Math. Chronicle 12, pp. 99–104.