About the Project

%E6%B2%99%E5%B7%B4%E4%BD%93%E8%82%B2%E6%8A%95%E6%B3%A8%E5%B9%B3%E5%8F%B0,%E6%B2%99%E5%B7%B4%E4%BD%93%E8%82%B2%E5%AE%98%E7%BD%91,%E3%80%90%E6%B2%99%E5%B7%B4%E4%BD%93%E8%82%B2%E6%8A%95%E6%B3%A8%E7%BD%91%E5%9D%80%E2%88%B63399yule.com%E3%80%91%E6%B2%99%E5%B7%B4%E4%BD%93%E8%82%B2%E8%B5%8C%E7%90%83%E5%B9%B3%E5%8F%B0,%E6%B2%99%E5%B7%B4%E4%BD%93%E8%82%B2%E7%BB%B4%E5%9F%BA%E7%99%BE%E7%A7%91,%E6%B2%99%E5%B7%B4%E4%BD%93%E8%82%B2app,%E6%B2%99%E5%B7%B4%E4%BD%93%E8%82%B2%E6%98%AF%E4%BB%80%E4%B9%88,%E6%B2%99%E5%B7%B4%E4%BD%93%E8%82%B2api,%E6%B2%99%E5%B7%B4%E4%B9%B0%E7%90%83%E5%B9%B3%E5%8F%B0%E3%80%90%E8%B5%8C%E7%90%83%E7%BD%91%E7%AB%99%E2%88%B63399yule.com%E3%80%91

AdvancedHelp

(0.049 seconds)

21—30 of 729 matching pages

21: 22.19 Physical Applications
θ being the angular displacement from the point of stable equilibrium, θ = 0 . … Many nonlinear ordinary and partial differential equations have solutions that may be expressed in terms of Jacobian elliptic functions. These include the time dependent, and time independent, nonlinear Schrödinger equations (NLSE) (Drazin and Johnson (1993, Chapter 2), Ablowitz and Clarkson (1991, pp. 42, 99)), the Korteweg–de Vries (KdV) equation (Kruskal (1974), Li and Olver (2000)), the sine-Gordon equation, and others; see Drazin and Johnson (1993, Chapter 2) for an overview. … The classical rotation of rigid bodies in free space or about a fixed point may be described in terms of elliptic, or hyperelliptic, functions if the motion is integrable (Audin (1999, Chapter 1)). …A more abstract overview is Audin (1999, Chapters III and IV), and a complete discussion of analytical solutions in the elliptic and hyperelliptic cases appears in Golubev (1960, Chapters V and VII), the original hyperelliptic investigation being due to Kowalevski (1889). …
22: 10.9 Integral Representations
For collections of integral representations of Bessel and Hankel functions see Erdélyi et al. (1953b, §§7.3 and 7.12), Erdélyi et al. (1954a, pp. 43–48, 51–60, 99–105, 108–115, 123–124, 272–276, and 356–357), Gröbner and Hofreiter (1950, pp. 189–192), Marichev (1983, pp. 191–192 and 196–210), Magnus et al. (1966, §3.6), and Watson (1944, Chapter 6).
23: Bibliography H
  • P. I. Hadži (1973) The Laplace transform for expressions that contain a probability function. Bul. Akad. Štiince RSS Moldoven. 1973 (2), pp. 78–80, 93 (Russian).
  • P. I. Hadži (1976a) Expansions for the probability function in series of Čebyšev polynomials and Bessel functions. Bul. Akad. Štiince RSS Moldoven. 1976 (1), pp. 77–80, 96 (Russian).
  • P. I. Hadži (1976b) Integrals that contain a probability function of complicated arguments. Bul. Akad. Štiince RSS Moldoven. 1976 (1), pp. 80–84, 96 (Russian).
  • P. I. Hadži (1978) Sums with cylindrical functions that reduce to the probability function and to related functions. Bul. Akad. Shtiintse RSS Moldoven. 1978 (3), pp. 80–84, 95 (Russian).
  • D. R. Hartree (1936) Some properties and applications of the repeated integrals of the error function. Proc. Manchester Lit. Philos. Soc. 80, pp. 85–102.
  • 24: 18.39 Applications in the Physical Sciences
    While non-normalizable continuum, or scattering, states are mentioned, with appropriate references in what follows, focus is on the L 2 eigenfunctions corresponding to the point, or discrete, spectrum, and representing bound rather than scattering states, these former being expressed in terms of OP’s or EOP’s. … The properties of V ( x ) determine whether the spectrum, this being the set of eigenvalues of , is discrete, continuous, or mixed, see §1.18. … See Titchmarsh (1962a, pp. 99–100). … From (18.9.23) and (18.5.5) with Table 18.5.1, line 8: … Full expressions for both A x i , l and B l ( x ) are given in Yamani and Reinhardt (1975) and it is seen that | A x i , l / B l ( x i ) | 2 = w i N / w CP ( x i ) where w i N is the Gaussian-Pollaczek quadrature weight at x = x i , and w CP ( x i ) is the Gaussian-Pollaczek weight function at the same quadrature abscissa. …
    25: Bibliography D
  • K. Dilcher (1987b) Irreducibility of certain generalized Bernoulli polynomials belonging to quadratic residue class characters. J. Number Theory 25 (1), pp. 72–80.
  • G. Doetsch (1955) Handbuch der Laplace-Transformation. Bd. II. Anwendungen der Laplace-Transformation. 1. Abteilung. Birkhäuser Verlag, Basel und Stuttgart (German).
  • B. A. Dubrovin (1981) Theta functions and non-linear equations. Uspekhi Mat. Nauk 36 (2(218)), pp. 11–80 (Russian).
  • T. M. Dunster (1997) Error analysis in a uniform asymptotic expansion for the generalised exponential integral. J. Comput. Appl. Math. 80 (1), pp. 127–161.
  • T. M. Dunster (2001b) Uniform asymptotic expansions for Charlier polynomials. J. Approx. Theory 112 (1), pp. 93–133.
  • 26: 26.6 Other Lattice Path Numbers
    Delannoy Number D ( m , n )
    D ( m , n ) is the number of paths from ( 0 , 0 ) to ( m , n ) that are composed of directed line segments of the form ( 1 , 0 ) , ( 0 , 1 ) , or ( 1 , 1 ) .
    26.6.1 D ( m , n ) = k = 0 n ( n k ) ( m + n k n ) = k = 0 n 2 k ( m k ) ( n k ) .
    Table 26.6.1: Delannoy numbers D ( m , n ) .
    m n
    26.6.4 r ( n ) = D ( n , n ) D ( n + 1 , n 1 ) , n 1 .
    27: Bibliography B
  • W. N. Bailey (1938) The generating function of Jacobi polynomials. J. London Math. Soc. 13, pp. 8–12.
  • D. K. Bhaumik and S. K. Sarkar (2002) On the power function of the likelihood ratio test for MANOVA. J. Multivariate Anal. 82 (2), pp. 416–421.
  • I. Bloch, M. H. Hull, A. A. Broyles, W. G. Bouricius, B. E. Freeman, and G. Breit (1950) Methods of calculation of radial wave functions and new tables of Coulomb functions. Physical Rev. (2) 80, pp. 553–560.
  • P. Boalch (2005) From Klein to Painlevé via Fourier, Laplace and Jimbo. Proc. London Math. Soc. (3) 90 (1), pp. 167–208.
  • R. Bulirsch (1965b) Numerical calculation of elliptic integrals and elliptic functions. Numer. Math. 7 (1), pp. 78–90.
  • 28: 12.14 The Function W ( a , x )
    For the modulus functions F ~ ( a , x ) and G ~ ( a , x ) see §12.14(x). … Other expansions, involving cos ( 1 4 x 2 ) and sin ( 1 4 x 2 ) , can be obtained from (12.4.3) to (12.4.6) by replacing a by i a and z by x e π i / 4 ; see Miller (1955, p. 80), and also (12.14.15) and (12.14.16). … Here 𝒜 s ( t ) is as in §12.10(ii), σ is defined by … uniformly for t [ 1 + δ , 1 δ ] , with η given by (12.10.23) and 𝒜 ~ s ( t ) given by (12.10.24). … uniformly for t [ 1 + δ , ) , with ζ , ϕ ( ζ ) , A s ( ζ ) , and B s ( ζ ) as in §12.10(vii). …
    29: Bibliography P
  • J. Patera and P. Winternitz (1973) A new basis for the representation of the rotation group. Lamé and Heun polynomials. J. Mathematical Phys. 14 (8), pp. 1130–1139.
  • M. D. Perlman and I. Olkin (1980) Unbiasedness of invariant tests for MANOVA and other multivariate problems. Ann. Statist. 8 (6), pp. 1326–1341.
  • M. Petkovšek, H. S. Wilf, and D. Zeilberger (1996) A = B . A K Peters Ltd., Wellesley, MA.
  • K. Prachar (1957) Primzahlverteilung. Die Grundlehren der mathematischen Wissenschaften, Vol. 91, Springer-Verlag, Berlin-Göttingen-Heidelberg (German).
  • T. Prellberg and A. L. Owczarek (1995) Stacking models of vesicles and compact clusters. J. Statist. Phys. 80 (3–4), pp. 755–779.
  • 30: 8.23 Statistical Applications
    In queueing theory the Erlang loss function is used, which can be expressed in terms of the reciprocal of Q ( a , x ) ; see Jagerman (1974) and Cooper (1981, pp. 80, 316–319). …