About the Project

Fej%C3%A9r%E2%80%99s

AdvancedHelp

(0.002 seconds)

31—40 of 610 matching pages

31: 34.4 Definition: 6 ⁒ j Symbol
β–Ί
34.4.1 { j 1 j 2 j 3 l 1 l 2 l 3 } = m r ⁒ m s ( 1 ) l 1 + m 1 + l 2 + m 2 + l 3 + m 3 ⁒ ( j 1 j 2 j 3 m 1 m 2 m 3 ) ⁒ ( j 1 l 2 l 3 m 1 m 2 m 3 ) ⁒ ( l 1 j 2 l 3 m 1 m 2 m 3 ) ⁒ ( l 1 l 2 j 3 m 1 m 2 m 3 ) ,
β–Ίwhere the summation is taken over all admissible values of the m s and m s for each of the four 3 ⁒ j symbols; compare (34.2.2) and (34.2.3). … β–Ί
34.4.2 { j 1 j 2 j 3 l 1 l 2 l 3 } = Ξ” ⁑ ( j 1 ⁒ j 2 ⁒ j 3 ) ⁒ Ξ” ⁑ ( j 1 ⁒ l 2 ⁒ l 3 ) ⁒ Ξ” ⁑ ( l 1 ⁒ j 2 ⁒ l 3 ) ⁒ Ξ” ⁑ ( l 1 ⁒ l 2 ⁒ j 3 ) ⁒ s ( 1 ) s ⁒ ( s + 1 ) ! ( s j 1 j 2 j 3 ) ! ⁒ ( s j 1 l 2 l 3 ) ! ⁒ ( s l 1 j 2 l 3 ) ! ⁒ ( s l 1 l 2 j 3 ) ! ⁒ 1 ( j 1 + j 2 + l 1 + l 2 s ) ! ⁒ ( j 2 + j 3 + l 2 + l 3 s ) ! ⁒ ( j 3 + j 1 + l 3 + l 1 s ) ! ,
β–Ίwhere the summation is over all nonnegative integers s such that the arguments in the factorials are nonnegative. …
32: 3.4 Differentiation
β–Ί
§3.4(i) Equally-Spaced Nodes
β–Ίβ–ΊIf f can be extended analytically into the complex plane, then from Cauchy’s integral formula (§1.9(iii)) … β–ΊFor partial derivatives we use the notation u t , s = u ⁑ ( x 0 + t ⁒ h , y 0 + s ⁒ h ) . …
33: Bibliography I
β–Ί
  • E. L. Ince (1940b) Further investigations into the periodic Lamé functions. Proc. Roy. Soc. Edinburgh 60, pp. 83–99.
  • β–Ί
  • A. Iserles, P. E. Koch, S. P. Nørsett, and J. M. Sanz-Serna (1991) On polynomials orthogonal with respect to certain Sobolev inner products. J. Approx. Theory 65 (2), pp. 151–175.
  • β–Ί
  • A. Iserles, S. P. Nørsett, and S. Olver (2006) Highly Oscillatory Quadrature: The Story So Far. In Numerical Mathematics and Advanced Applications, A. Bermudez de Castro and others (Eds.), pp. 97–118.
  • β–Ί
  • A. R. Its, A. S. Fokas, and A. A. Kapaev (1994) On the asymptotic analysis of the Painlevé equations via the isomonodromy method. Nonlinearity 7 (5), pp. 1291–1325.
  • β–Ί
  • A. IviΔ‡ (1985) The Riemann Zeta-Function. A Wiley-Interscience Publication, John Wiley & Sons Inc., New York.
  • 34: Bibliography T
    β–Ί
  • Y. Takei (1995) On the connection formula for the first Painlevé equation—from the viewpoint of the exact WKB analysis. SΕ«rikaisekikenkyΕ«sho KōkyΕ«roku (931), pp. 70–99.
  • β–Ί
  • J. D. Talman (1983) LSFBTR: A subroutine for calculating spherical Bessel transforms. Comput. Phys. Comm. 30 (1), pp. 93–99.
  • β–Ί
  • J. W. Tanner and S. S. Wagstaff (1987) New congruences for the Bernoulli numbers. Math. Comp. 48 (177), pp. 341–350.
  • β–Ί
  • S. A. Teukolsky (1972) Rotating black holes: Separable wave equations for gravitational and electromagnetic perturbations. Phys. Rev. Lett. 29 (16), pp. 1114–1118.
  • β–Ί
  • J. S. Thompson (1996) High Speed Numerical Integration of Fermi Dirac Integrals. Master’s Thesis, Naval Postgraduate School, Monterey, CA.
  • 35: Bibliography N
    β–Ί
  • National Physical Laboratory (1961) Modern Computing Methods. 2nd edition, Notes on Applied Science, No. 16, Her Majesty’s Stationery Office, London.
  • β–Ί
  • National Bureau of Standards (1967) Tables Relating to Mathieu Functions: Characteristic Values, Coefficients, and Joining Factors. 2nd edition, National Bureau of Standards Applied Mathematics Series, U.S. Government Printing Office, Washington, D.C..
  • β–Ί
  • G. Nemes (2020) An extension of Laplace’s method. Constr. Approx. 51 (2), pp. 247–272.
  • β–Ί
  • E. Neuman (1969a) Elliptic integrals of the second and third kinds. Zastos. Mat. 11, pp. 99–102.
  • β–Ί
  • A. Nijenhuis and H. S. Wilf (1975) Combinatorial Algorithms. Academic Press, New York.
  • 36: 10.32 Integral Representations
    β–Ί
    10.32.5 K 0 ⁑ ( z ) = 1 Ο€ ⁒ 0 Ο€ e ± z ⁒ cos ⁑ ΞΈ ⁒ ( Ξ³ + ln ⁑ ( 2 ⁒ z ⁒ ( sin ⁑ ΞΈ ) 2 ) ) ⁒ d ΞΈ .
    β–Ί
    Basset’s Integral
    37: Bibliography E
    β–Ί
  • H. M. Edwards (1974) Riemann’s Zeta Function. Academic Press, New York-London.
  • β–Ί
  • Á. Elbert and A. Laforgia (2000) Further results on McMahon’s asymptotic approximations. J. Phys. A 33 (36), pp. 6333–6341.
  • β–Ί
  • W. J. Ellison (1971) Waring’s problem. Amer. Math. Monthly 78 (1), pp. 10–36.
  • β–Ί
  • D. Erricolo (2006) Algorithm 861: Fortran 90 subroutines for computing the expansion coefficients of Mathieu functions using Blanch’s algorithm. ACM Trans. Math. Software 32 (4), pp. 622–634.
  • β–Ί
  • H. Exton (1983) The asymptotic behaviour of the inhomogeneous Airy function Hi ⁒ ( z ) . Math. Chronicle 12, pp. 99–104.
  • 38: Bibliography C
    β–Ί
  • L. G. Cabral-Rosetti and M. A. Sanchis-Lozano (2000) Generalized hypergeometric functions and the evaluation of scalar one-loop integrals in Feynman diagrams. J. Comput. Appl. Math. 115 (1-2), pp. 93–99.
  • β–Ί
  • H. S. Carslaw (1930) Introduction to the Theory of Fourier’s Series and Integrals. 3rd edition, Macmillan, London.
  • β–Ί
  • M. A. Chaudhry and S. M. Zubair (1994) Generalized incomplete gamma functions with applications. J. Comput. Appl. Math. 55 (1), pp. 99–124.
  • β–Ί
  • R. M. Corless, D. J. Jeffrey, and H. Rasmussen (1992) Numerical evaluation of Airy functions with complex arguments. J. Comput. Phys. 99 (1), pp. 106–114.
  • β–Ί
  • A. Cruz, J. Esparza, and J. Sesma (1991) Zeros of the Hankel function of real order out of the principal Riemann sheet. J. Comput. Appl. Math. 37 (1-3), pp. 89–99.
  • 39: 19.9 Inequalities
    β–Ί
    §19.9(i) Complete Integrals
    β–ΊRamanujan’s approximation and its leading error term yield the following approximation to L ⁑ ( a , b ) / ( Ο€ ⁒ ( a + b ) ) : …Even for the extremely eccentric ellipse with a = 99 and b = 1 , this is correct within 0. …Barnard et al. (2000) shows that nine of the thirteen approximations, including Ramanujan’s, are from below and four are from above. … β–Ί
    §19.9(ii) Incomplete Integrals
    40: Bibliography B
    β–Ί
  • B. C. Berndt (1989) Ramanujan’s Notebooks. Part II. Springer-Verlag, New York.
  • β–Ί
  • B. C. Berndt (1991) Ramanujan’s Notebooks. Part III. Springer-Verlag, Berlin-New York.
  • β–Ί
  • M. V. Berry (1976) Waves and Thom’s theorem. Advances in Physics 25 (1), pp. 1–26.
  • β–Ί
  • M. V. Berry (1989) Uniform asymptotic smoothing of Stokes’s discontinuities. Proc. Roy. Soc. London Ser. A 422, pp. 7–21.
  • β–Ί
  • I. Bloch, M. H. Hull, A. A. Broyles, W. G. Bouricius, B. E. Freeman, and G. Breit (1950) Methods of calculation of radial wave functions and new tables of Coulomb functions. Physical Rev. (2) 80, pp. 553–560.