About the Project

unit

AdvancedHelp

(0.000 seconds)

21—30 of 404 matching pages

21: 4.14 Definitions and Periodicity
4.14.1 sin z = e i z e i z 2 i ,
4.14.2 cos z = e i z + e i z 2 ,
4.14.3 cos z ± i sin z = e ± i z ,
22: 9.2 Differential Equation
9.2.10 Bi ( z ) = e π i / 6 Ai ( z e 2 π i / 3 ) + e π i / 6 Ai ( z e 2 π i / 3 ) .
9.2.12 Ai ( z ) + e 2 π i / 3 Ai ( z e 2 π i / 3 ) + e 2 π i / 3 Ai ( z e 2 π i / 3 ) = 0 ,
9.2.13 Bi ( z ) + e 2 π i / 3 Bi ( z e 2 π i / 3 ) + e 2 π i / 3 Bi ( z e 2 π i / 3 ) = 0 .
9.2.14 Ai ( z ) = e π i / 3 Ai ( z e π i / 3 ) + e π i / 3 Ai ( z e π i / 3 ) ,
9.2.15 Bi ( z ) = e π i / 6 Ai ( z e π i / 3 ) + e π i / 6 Ai ( z e π i / 3 ) .
23: 36 Integrals with Coalescing Saddles
24: 5.13 Integrals
5.13.1 1 2 π i c i c + i Γ ( s + a ) Γ ( b s ) z s d s = Γ ( a + b ) z a ( 1 + z ) a + b , ( a + b ) > 0 , a < c < b , | ph z | < π .
5.13.2 1 2 π | Γ ( a + i t ) | 2 e ( 2 b π ) t d t = Γ ( 2 a ) ( 2 sin b ) 2 a , a > 0 , 0 < b < π .
5.13.3 1 2 π Γ ( a + i t ) Γ ( b + i t ) Γ ( c i t ) Γ ( d i t ) d t = Γ ( a + c ) Γ ( a + d ) Γ ( b + c ) Γ ( b + d ) Γ ( a + b + c + d ) , a , b , c , d > 0 .
5.13.5 1 4 π k = 1 4 Γ ( a k + i t ) Γ ( a k i t ) Γ ( 2 i t ) Γ ( 2 i t ) d t = 1 j < k 4 Γ ( a j + a k ) Γ ( a 1 + a 2 + a 3 + a 4 ) , ( a k ) > 0 , k = 1 , 2 , 3 , 4 .
25: 5.3 Graphics
See accompanying text
Figure 5.3.4: | Γ ( x + i y ) | . Magnify 3D Help
See accompanying text
Figure 5.3.5: 1 / | Γ ( x + i y ) | . Magnify 3D Help
See accompanying text
Figure 5.3.6: | ψ ( x + i y ) | . Magnify 3D Help
26: 10.56 Generating Functions
10.56.3 cosh z 2 + 2 i z t z = cosh z z + n = 1 ( i t ) n n ! 𝗂 n 1 ( 1 ) ( z ) ,
10.56.4 sinh z 2 + 2 i z t z = sinh z z + n = 1 ( i t ) n n ! 𝗂 n 1 ( 2 ) ( z ) ,
10.56.5 exp ( z 2 + 2 i z t ) z = e z z + 2 π n = 1 ( i t ) n n ! 𝗄 n 1 ( z ) .
27: 11.8 Analogs to Kelvin Functions
§11.8 Analogs to Kelvin Functions
For properties of Struve functions of argument x e ± 3 π i / 4 see McLachlan and Meyers (1936).
28: 25.13 Periodic Zeta Function
The notation F ( x , s ) is used for the polylogarithm Li s ( e 2 π i x ) with x real:
25.13.1 F ( x , s ) n = 1 e 2 π i n x n s ,
25.13.2 F ( x , s ) = Γ ( 1 s ) ( 2 π ) 1 s ( e π i ( 1 s ) / 2 ζ ( 1 s , x ) + e π i ( s 1 ) / 2 ζ ( 1 s , 1 x ) ) , 0 < x < 1 , s > 1 ,
25.13.3 ζ ( 1 s , x ) = Γ ( s ) ( 2 π ) s ( e π i s / 2 F ( x , s ) + e π i s / 2 F ( x , s ) ) , s > 0 if 0 < x < 1 ; s > 1 if x = 1 .
29: 23.17 Elementary Properties
λ ( i ) = 1 2 ,
λ ( e π i / 3 ) = e π i / 3 ,
J ( i ) = 1 ,
J ( e π i / 3 ) = 0 ,
with q 1 / 12 = e i π τ / 12 .
30: 22.4 Periods, Poles, and Zeros
§22.4(ii) Graphical Interpretation via Glaisher’s Notation
Figure 22.4.2 depicts the fundamental unit cell in the z -plane, with vertices s = 0 , c = K , d = K + i K , n = i K . The set of points z = m K + n i K , m , n , comprise the lattice for the 12 Jacobian functions; all other lattice unit cells are generated by translation of the fundamental unit cell by m K + n i K , where again m , n . … Let p,q be any two distinct letters from the set s,c,d,n which appear in counterclockwise orientation at the corners of all lattice unit cells. Then: (a) In any lattice unit cell p q ( z , k ) has a simple zero at z = p and a simple pole at z = q . …