About the Project

squares and products

AdvancedHelp

(0.002 seconds)

11—20 of 38 matching pages

11: 10.65 Power Series
§10.65(iii) Cross-Products and Sums of Squares
12: 10.67 Asymptotic Expansions for Large Argument
§10.67(ii) Cross-Products and Sums of Squares in the Case ν = 0
13: DLMF Project News
error generating summary
14: 20.7 Identities
§20.7(i) Sums of Squares
§20.7(iv) Reduction Formulas for Products
In the following equations τ = 1 / τ , and all square roots assume their principal values. …
§20.7(ix) Addendum to 20.7(iv) Reduction Formulas for Products
15: 19.21 Connection Formulas
19.21.7 ( x y ) R D ( y , z , x ) + ( z y ) R D ( x , y , z ) = 3 R F ( x , y , z ) 3 y 1 / 2 x 1 / 2 z 1 / 2 ,
19.21.8 R D ( y , z , x ) + R D ( z , x , y ) + R D ( x , y , z ) = 3 x 1 / 2 y 1 / 2 z 1 / 2 ,
19.21.10 2 R G ( x , y , z ) = z R F ( x , y , z ) 1 3 ( x z ) ( y z ) R D ( x , y , z ) + x 1 / 2 y 1 / 2 z 1 / 2 , z 0 .
16: 19.29 Reduction of General Elliptic Integrals
These theorems reduce integrals over a real interval ( y , x ) of certain integrands containing the square root of a quartic or cubic polynomial to symmetric integrals over ( 0 , ) containing the square root of a cubic polynomial (compare §19.16(i)). …If
19.29.3 s ( t ) = α = 1 4 a α + b α t
where α , β , γ is any permutation of the numbers 1 , 2 , 3 , and … If both square roots in (19.29.22) are 0, then the indeterminacy in the two preceding equations can be removed by using (19.27.8) to evaluate the integral as R G ( a 1 b 2 , a 2 b 1 , 0 ) multiplied either by 2 / ( b 1 b 2 ) or by 2 / ( a 1 a 2 ) in the cases of (19.29.20) or (19.29.21), respectively. …
17: 26.15 Permutations: Matrix Notation
The inversion number of σ is a sum of products of pairs of entries in the matrix representation of σ : … Let r j ( B ) be the number of ways of placing j nonattacking rooks on the squares of B . …
26.15.11 k = 0 n r n k ( B ) ( x k + 1 ) k = j = 1 n ( x + b j j + 1 ) .
18: Bibliography M
  • J. Martinek, H. P. Thielman, and E. C. Huebschman (1966) On the zeros of cross-product Bessel functions. J. Math. Mech. 16, pp. 447–452.
  • L. C. Maximon (1991) On the evaluation of the integral over the product of two spherical Bessel functions. J. Math. Phys. 32 (3), pp. 642–648.
  • S. C. Milne (2002) Infinite families of exact sums of squares formulas, Jacobi elliptic functions, continued fractions, and Schur functions. Ramanujan J. 6 (1), pp. 7–149.
  • S. C. Milne (1996) New infinite families of exact sums of squares formulas, Jacobi elliptic functions, and Ramanujan’s tau function. Proc. Nat. Acad. Sci. U.S.A. 93 (26), pp. 15004–15008.
  • L. J. Mordell (1917) On the representation of numbers as a sum of 2 r squares. Quarterly Journal of Math. 48, pp. 93–104.
  • 19: Bibliography C
  • B. C. Carlson and J. FitzSimons (2000) Reduction theorems for elliptic integrands with the square root of two quadratic factors. J. Comput. Appl. Math. 118 (1-2), pp. 71–85.
  • B. C. Carlson (2006b) Table of integrals of squared Jacobian elliptic functions and reductions of related hypergeometric R -functions. Math. Comp. 75 (255), pp. 1309–1318.
  • J. Chen (1966) On the representation of a large even integer as the sum of a prime and the product of at most two primes. Kexue Tongbao (Foreign Lang. Ed.) 17, pp. 385–386.
  • J. A. Cochran (1964) Remarks on the zeros of cross-product Bessel functions. J. Soc. Indust. Appl. Math. 12 (3), pp. 580–587.
  • J. A. Cochran (1966a) The analyticity of cross-product Bessel function zeros. Proc. Cambridge Philos. Soc. 62, pp. 215–226.
  • 20: 22.14 Integrals
    For indefinite integrals of squares and products of even powers of Jacobian functions in terms of symmetric elliptic integrals, see Carlson (2006b). …