About the Project

of differential operators

AdvancedHelp

(0.003 seconds)

1—10 of 54 matching pages

1: 17.2 Calculus
17.2.41 𝒟 q f ( z ) = { f ( z ) f ( z q ) ( 1 q ) z , z 0 , f ( 0 ) , z = 0 ,
17.2.42 f [ n ] ( z ) = 𝒟 q n f ( z ) = { z n ( 1 q ) n j = 0 n q n j + ( j + 1 2 ) ( 1 ) j [ n j ] q f ( z q j ) , z 0 , f ( n ) ( 0 ) ( q ; q ) n n ! ( 1 q ) n , z = 0 .
17.2.43 𝒟 q ( f ( z ) g ( z ) ) = g ( z ) f [ 1 ] ( z ) + f ( z q ) g [ 1 ] ( z ) .
17.2.44 𝒟 q n ( f ( z ) g ( z ) ) = j = 0 n [ n j ] q f [ n j ] ( z q j ) g [ j ] ( z ) .
2: 1.18 Linear Second Order Differential Operators and Eigenfunction Expansions
§1.18 Linear Second Order Differential Operators and Eigenfunction Expansions
Formally Self-Adjoint and Self-Adjoint Differential Operators: Self-Adjoint Extensions
3: 17.6 ϕ 1 2 Function
Iterations of 𝒟
17.6.26 𝒟 q n ( ( z ; q ) ( a b z / c ; q ) ϕ 1 2 ( a , b c ; q , z ) ) = ( c / a , c / b ; q ) n ( c ; q ) n ( 1 q ) n ( a b c ) n ( z q n ; q ) ( a b z / c ; q ) ϕ 1 2 ( a , b c q n ; q , z q n ) .
17.6.27 z ( c a b q z ) 𝒟 q 2 ϕ 1 2 ( a , b c ; q , z ) + ( 1 c 1 q + ( 1 a ) ( 1 b ) ( 1 a b q ) 1 q z ) 𝒟 q ϕ 1 2 ( a , b c ; q , z ) ( 1 a ) ( 1 b ) ( 1 q ) 2 ϕ 1 2 ( a , b c ; q , z ) = 0 .
4: 16.8 Differential Equations
16.8.3 ( ϑ ( ϑ + b 1 1 ) ( ϑ + b q 1 ) z ( ϑ + a 1 ) ( ϑ + a p ) ) w = 0 .
16.8.4 z q 𝐷 q + 1 w + j = 1 q z j 1 ( α j z + β j ) 𝐷 j w + α 0 w = 0 , p q ,
16.8.5 z q ( 1 z ) 𝐷 q + 1 w + j = 1 q z j 1 ( α j z + β j ) 𝐷 j w + α 0 w = 0 , p = q + 1 ,
5: 19.4 Derivatives and Differential Equations
Then
19.4.8 ( k k 2 D k 2 + ( 1 3 k 2 ) D k k ) F ( ϕ , k ) = k sin ϕ cos ϕ ( 1 k 2 sin 2 ϕ ) 3 / 2 ,
19.4.9 ( k k 2 D k 2 + k 2 D k + k ) E ( ϕ , k ) = k sin ϕ cos ϕ 1 k 2 sin 2 ϕ .
6: 16.21 Differential Equation
16.21.1 ( ( 1 ) p m n z ( ϑ a 1 + 1 ) ( ϑ a p + 1 ) ( ϑ b 1 ) ( ϑ b q ) ) w = 0 ,
7: 1.16 Distributions
1.16.30 𝐃 = ( 1 i x 1 , 1 i x 2 , , 1 i x n ) .
1.16.32 P ( 𝐃 ) = 𝜶 c 𝜶 𝐃 α = 𝜶 c 𝜶 ( 1 i x 1 ) α 1 ( 1 i x n ) α n .
Here 𝜶 ranges over a finite set of multi-indices, P ( 𝐱 ) is a multivariate polynomial, and P ( 𝐃 ) is a partial differential operator. …
1.16.36 ( P ( 𝐃 ) u ) , ϕ = P ( u ) , ϕ = ( u ) , P ϕ ,
1.16.37 ( P u ) , ϕ = P ( 𝐃 ) ( u ) , ϕ ,
8: 18.38 Mathematical Applications
Quadrature “Extended” to Pseudo-Spectral (DVR) Representations of Operators in One and Many Dimensions
The basic ideas of Gaussian quadrature, and their extensions to non-classical weight functions, and the computation of the corresponding quadrature abscissas and weights, have led to discrete variable representations, or DVRs, of Sturm–Liouville and other differential operators. …
9: 16.19 Identities
16.19.5 ϑ G p , q m , n ( z ; a 1 , , a p b 1 , , b q ) = G p , q m , n ( z ; a 1 1 , a 2 , , a p b 1 , , b q ) + ( a 1 1 ) G p , q m , n ( z ; a 1 , , a p b 1 , , b q ) ,
10: 1.5 Calculus of Two or More Variables
1.5.3 f x = D x f = f x = lim h 0 f ( x + h , y ) f ( x , y ) h ,
1.5.4 f y = D y f = f y = lim h 0 f ( x , y + h ) f ( x , y ) h .