About the Project

lattice walks

AdvancedHelp

(0.002 seconds)

11—20 of 59 matching pages

11: 23.23 Tables
2 in Abramowitz and Stegun (1964) gives values of ( z ) , ( z ) , and ζ ( z ) to 7 or 8D in the rectangular and rhombic cases, normalized so that ω 1 = 1 and ω 3 = i a (rectangular case), or ω 1 = 1 and ω 3 = 1 2 + i a (rhombic case), for a = 1. …05, and in the case of ( z ) the user may deduce values for complex z by application of the addition theorem (23.10.1). Abramowitz and Stegun (1964) also includes other tables to assist the computation of the Weierstrass functions, for example, the generators as functions of the lattice invariants g 2 and g 3 . …
12: 23.6 Relations to Other Functions
In this subsection 2 ω 1 , 2 ω 3 are any pair of generators of the lattice 𝕃 , and the lattice roots e 1 , e 2 , e 3 are given by (23.3.9). … For further results for the σ -function see Lawden (1989, §6.2). … Again, in Equations (23.6.16)–(23.6.26), 2 ω 1 , 2 ω 3 are any pair of generators of the lattice 𝕃 and e 1 , e 2 , e 3 are given by (23.3.9). …
Rectangular Lattice
General Lattice
13: 23.19 Interrelations
23.19.3 J ( τ ) = g 2 3 g 2 3 27 g 3 2 ,
where g 2 , g 3 are the invariants of the lattice 𝕃 with generators 1 and τ ; see §23.3(i). …
14: 23.1 Special Notation
𝕃 lattice in .
2 ω 1 , 2 ω 3 lattice generators ( ( ω 3 / ω 1 ) > 0 ).
Δ discriminant g 2 3 27 g 3 2 .
The main functions treated in this chapter are the Weierstrass -function ( z ) = ( z | 𝕃 ) = ( z ; g 2 , g 3 ) ; the Weierstrass zeta function ζ ( z ) = ζ ( z | 𝕃 ) = ζ ( z ; g 2 , g 3 ) ; the Weierstrass sigma function σ ( z ) = σ ( z | 𝕃 ) = σ ( z ; g 2 , g 3 ) ; the elliptic modular function λ ( τ ) ; Klein’s complete invariant J ( τ ) ; Dedekind’s eta function η ( τ ) . … Abramowitz and Stegun (1964, Chapter 18) considers only rectangular and rhombic lattices23.5); ω 1 , ω 3 are replaced by ω , ω for the former and by ω 2 , ω for the latter. …
15: 23.13 Zeros
For information on the zeros of ( z ) see Eichler and Zagier (1982).
16: 23.11 Integral Representations
23.11.2 ( z ) = 1 z 2 + 8 0 s ( e s sinh 2 ( 1 2 z s ) f 1 ( s , τ ) + e i τ s sin 2 ( 1 2 z s ) f 2 ( s , τ ) ) d s ,
23.11.3 ζ ( z ) = 1 z + 0 ( e s ( z s sinh ( z s ) ) f 1 ( s , τ ) e i τ s ( z s sin ( z s ) ) f 2 ( s , τ ) ) d s ,
17: 23.12 Asymptotic Approximations
23.12.2 ζ ( z ) = π 2 4 ω 1 2 ( z 3 + 2 ω 1 π cot ( π z 2 ω 1 ) 8 ( z ω 1 π sin ( π z ω 1 ) ) q 2 + O ( q 4 ) ) ,
23.12.3 σ ( z ) = 2 ω 1 π exp ( π 2 z 2 24 ω 1 2 ) sin ( π z 2 ω 1 ) ( 1 ( π 2 z 2 ω 1 2 4 sin 2 ( π z 2 ω 1 ) ) q 2 + O ( q 4 ) ) ,
23.12.4 η 1 = π 2 4 ω 1 ( 1 3 8 q 2 + O ( q 4 ) ) ,
18: 31.2 Differential Equations
k 2 = ( e 2 e 3 ) / ( e 1 e 3 ) ,
e 1 = ( ω 1 ) ,
e 2 = ( ω 2 ) ,
e 1 + e 2 + e 3 = 0 ,
where 2 ω 1 and 2 ω 3 with ( ω 3 / ω 1 ) > 0 are generators of the lattice 𝕃 for ( z | 𝕃 ) . …
19: 23.8 Trigonometric Series and Products
23.8.1 ( z ) + η 1 ω 1 π 2 4 ω 1 2 csc 2 ( π z 2 ω 1 ) = 2 π 2 ω 1 2 n = 1 n q 2 n 1 q 2 n cos ( n π z ω 1 ) ,
23.8.2 ζ ( z ) η 1 z ω 1 π 2 ω 1 cot ( π z 2 ω 1 ) = 2 π ω 1 n = 1 q 2 n 1 q 2 n sin ( n π z ω 1 ) .
23.8.6 σ ( z ) = 2 ω 1 π exp ( η 1 z 2 2 ω 1 ) sin ( π z 2 ω 1 ) n = 1 1 2 q 2 n cos ( π z / ω 1 ) + q 4 n ( 1 q 2 n ) 2 ,
20: 26.2 Basic Definitions
Lattice Path
A lattice path is a directed path on the plane integer lattice { 0 , 1 , 2 , } × { 0 , 1 , 2 , } . …For an example see Figure 26.9.2. A k-dimensional lattice path is a directed path composed of segments that connect vertices in { 0 , 1 , 2 , } k so that each segment increases one coordinate by exactly one unit. …