23.7 Quarter Periods23.9 Laurent and Other Power Series

§23.8 Trigonometric Series and Products

Contents

§23.8(ii) Series of Cosecants and Cotangents

When z\notin\mathbb{L},

23.8.3\mathop{\wp\/}\nolimits\!\left(z\right)=-\frac{\eta _{1}}{\omega _{1}}+\frac{\pi^{2}}{4\omega _{1}^{2}}\sum _{{n=-\infty}}^{\infty}{\mathop{\csc\/}\nolimits^{{2}}}\!\left(\frac{\pi(z+2n\omega _{3})}{2\omega _{1}}\right),
23.8.4\mathop{\zeta\/}\nolimits\!\left(z\right)=\frac{\eta _{1}z}{\omega _{1}}+\frac{\pi}{2\omega _{1}}\sum _{{n=-\infty}}^{\infty}\mathop{\cot\/}\nolimits\!\left(\frac{\pi(z+2n\omega _{3})}{2\omega _{1}}\right),

where in (23.8.4) the terms in n and -n are to be bracketed together (the Eisenstein convention or principal value: see Weil (1999, p. 6) or Walker (1996, p. 3)).

23.8.5\eta _{1}=\frac{\pi^{2}}{2\omega _{1}}\left(\frac{1}{6}+\sum _{{n=1}}^{\infty}{\mathop{\csc\/}\nolimits^{{2}}}\!\left(\frac{n\pi\omega _{3}}{\omega _{1}}\right)\right),

with similar results for \eta _{2} and \eta _{3} obtainable by use of (23.2.14).