About the Project

in modified Bessel functions

AdvancedHelp

(0.033 seconds)

11—20 of 111 matching pages

11: Bibliography K
  • M. K. Kerimov and S. L. Skorokhodov (1984a) Calculation of modified Bessel functions in a complex domain. Zh. Vychisl. Mat. i Mat. Fiz. 24 (5), pp. 650–664.
  • M. K. Kerimov and S. L. Skorokhodov (1984b) Calculation of the complex zeros of the modified Bessel function of the second kind and its derivatives. Zh. Vychisl. Mat. i Mat. Fiz. 24 (8), pp. 1150–1163.
  • 12: 10.31 Power Series
    10.31.1 K n ( z ) = 1 2 ( 1 2 z ) n k = 0 n 1 ( n k 1 ) ! k ! ( 1 4 z 2 ) k + ( 1 ) n + 1 ln ( 1 2 z ) I n ( z ) + ( 1 ) n 1 2 ( 1 2 z ) n k = 0 ( ψ ( k + 1 ) + ψ ( n + k + 1 ) ) ( 1 4 z 2 ) k k ! ( n + k ) ! ,
    10.31.2 K 0 ( z ) = ( ln ( 1 2 z ) + γ ) I 0 ( z ) + 1 4 z 2 ( 1 ! ) 2 + ( 1 + 1 2 ) ( 1 4 z 2 ) 2 ( 2 ! ) 2 + ( 1 + 1 2 + 1 3 ) ( 1 4 z 2 ) 3 ( 3 ! ) 2 + .
    10.31.3 I ν ( z ) I μ ( z ) = ( 1 2 z ) ν + μ k = 0 ( ν + μ + k + 1 ) k ( 1 4 z 2 ) k k ! Γ ( ν + k + 1 ) Γ ( μ + k + 1 ) .
    13: 10.74 Methods of Computation
    In the case of the modified Bessel function K ν ( z ) see especially Temme (1975). … In the case of the spherical Bessel functions the explicit formulas given in §§10.49(i) and 10.49(ii) are terminating cases of the asymptotic expansions given in §§10.17(i) and 10.40(i) for the Bessel functions and modified Bessel functions. …
    14: 10.35 Generating Function and Associated Series
    §10.35 Generating Function and Associated Series
    For z and t { 0 } , … Jacobi–Anger expansions: for z , θ , …
    10.35.4 1 = I 0 ( z ) 2 I 2 ( z ) + 2 I 4 ( z ) 2 I 6 ( z ) + ,
    10.35.5 e ± z = I 0 ( z ) ± 2 I 1 ( z ) + 2 I 2 ( z ) ± 2 I 3 ( z ) + ,
    15: Bibliography T
  • N. M. Temme (1990b) Uniform asymptotic expansions of a class of integrals in terms of modified Bessel functions, with application to confluent hypergeometric functions. SIAM J. Math. Anal. 21 (1), pp. 241–261.
  • 16: 10.25 Definitions
    10.25.2 I ν ( z ) = ( 1 2 z ) ν k = 0 ( 1 4 z 2 ) k k ! Γ ( ν + k + 1 ) .
    Corresponding to the symbol 𝒞 ν introduced in §10.2(ii), we sometimes use 𝒵 ν ( z ) to denote I ν ( z ) , e ν π i K ν ( z ) , or any nontrivial linear combination of these functions, the coefficients in which are independent of z and ν . …
    17: 28.27 Addition Theorems
    §28.27 Addition Theorems
    Addition theorems provide important connections between Mathieu functions with different parameters and in different coordinate systems. They are analogous to the addition theorems for Bessel functions10.23(ii)) and modified Bessel functions10.44(ii)). …
    18: 10.38 Derivatives with Respect to Order
    10.38.1 I ± ν ( z ) ν = ± I ± ν ( z ) ln ( 1 2 z ) ( 1 2 z ) ± ν k = 0 ψ ( k + 1 ± ν ) Γ ( k + 1 ± ν ) ( 1 4 z 2 ) k k ! ,
    10.38.3 ( 1 ) n I ν ( z ) ν | ν = n = K n ( z ) + n ! 2 ( 1 2 z ) n k = 0 n 1 ( 1 ) k ( 1 2 z ) k I k ( z ) k ! ( n k ) ,
    10.38.4 K ν ( z ) ν | ν = n = n ! 2 ( 1 2 z ) n k = 0 n 1 ( 1 2 z ) k K k ( z ) k ! ( n k ) .
    19: 10.36 Other Differential Equations
    §10.36 Other Differential Equations
    The quantity λ 2 in (10.13.1)–(10.13.6) and (10.13.8) can be replaced by λ 2 if at the same time the symbol 𝒞 in the given solutions is replaced by 𝒵 . …
    10.36.1 z 2 ( z 2 + ν 2 ) w ′′ + z ( z 2 + 3 ν 2 ) w ( ( z 2 + ν 2 ) 2 + z 2 ν 2 ) w = 0 , w = 𝒵 ν ( z ) ,
    10.36.2 z 2 w ′′ + z ( 1 ± 2 z ) w + ( ± z ν 2 ) w = 0 , w = e z 𝒵 ν ( z ) .
    20: 10.73 Physical Applications
    Consequently, Bessel functions J n ( x ) , and modified Bessel functions I n ( x ) , are central to the analysis of microwave and optical transmission in waveguides, including coaxial and fiber. …