About the Project

cylinder functions

AdvancedHelp

(0.006 seconds)

21—30 of 85 matching pages

21: 12.8 Recurrence Relations and Derivatives
§12.8(i) Recurrence Relations
12.8.1 z U ( a , z ) U ( a 1 , z ) + ( a + 1 2 ) U ( a + 1 , z ) = 0 ,
12.8.2 U ( a , z ) + 1 2 z U ( a , z ) + ( a + 1 2 ) U ( a + 1 , z ) = 0 ,
12.8.3 U ( a , z ) 1 2 z U ( a , z ) + U ( a 1 , z ) = 0 ,
§12.8(ii) Derivatives
22: 12.12 Integrals
§12.12 Integrals
Nicholson-type Integral
12.12.4 ( U ( a , z ) ) 2 + ( U ¯ ( a , z ) ) 2 = 2 3 2 π Γ ( 1 2 a ) 0 e 2 a t + 1 2 z 2 tanh t sinh ( 2 t ) d t , a < 1 2 .
See also Barr (1968) and Lowdon (1970).
23: 10.43 Integrals
Let 𝒵 ν ( z ) be defined as in §10.25(ii). …
z ν + 1 𝒵 ν ( z ) d z = z ν + 1 𝒵 ν + 1 ( z ) ,
z ν + 1 𝒵 ν ( z ) d z = z ν + 1 𝒵 ν 1 ( z ) .
e ± z z ν 𝒵 ν ( z ) d z = e ± z z ν + 1 2 ν + 1 ( 𝒵 ν ( z ) 𝒵 ν + 1 ( z ) ) , ν 1 2 ,
e ± z z ν 𝒵 ν ( z ) d z = e ± z z ν + 1 1 2 ν ( 𝒵 ν ( z ) 𝒵 ν 1 ( z ) ) , ν 1 2 .
24: 10.22 Integrals
In this subsection 𝒞 ν ( z ) and 𝒟 μ ( z ) denote cylinder functions10.2(ii)) of orders ν and μ , respectively, not necessarily distinct.
z ν + 1 𝒞 ν ( z ) d z = z ν + 1 𝒞 ν + 1 ( z ) ,
z ν + 1 𝒞 ν ( z ) d z = z ν + 1 𝒞 ν 1 ( z ) .
e i z z ν 𝒞 ν ( z ) d z = e i z z ν + 1 2 ν + 1 ( 𝒞 ν ( z ) i 𝒞 ν + 1 ( z ) ) , ν 1 2 ,
10.22.5 z 𝒞 μ ( a z ) 𝒟 μ ( a z ) d z = 1 4 z 2 ( 2 𝒞 μ ( a z ) 𝒟 μ ( a z ) 𝒞 μ 1 ( a z ) 𝒟 μ + 1 ( a z ) 𝒞 μ + 1 ( a z ) 𝒟 μ 1 ( a z ) ) ,
25: 12.13 Sums
§12.13 Sums
§12.13(i) Addition Theorems
12.13.1 U ( a , x + y ) = e 1 2 x y + 1 4 y 2 m = 0 ( y ) m m ! U ( a m , x ) ,
12.13.2 U ( a , x + y ) = e 1 2 x y 1 4 y 2 m = 0 ( a 1 2 m ) y m U ( a + m , x ) ,
12.13.3 V ( a , x + y ) = e 1 2 x y + 1 4 y 2 m = 0 ( a 1 2 m ) y m V ( a m , x ) ,
26: 10.2 Definitions
§10.2(i) Bessel’s Equation
Cylinder Functions
The notation 𝒞 ν ( z ) denotes J ν ( z ) , Y ν ( z ) , H ν ( 1 ) ( z ) , H ν ( 2 ) ( z ) , or any nontrivial linear combination of these functions, the coefficients in which are independent of z and ν . …
27: 10.21 Zeros
The positive zeros of any two real distinct cylinder functions of the same order are interlaced, as are the positive zeros of any real cylinder function 𝒞 ν ( z ) and the contiguous function 𝒞 ν + 1 ( z ) . …
10.21.5 𝒞 ν ( ρ ν ) = 𝒞 ν 1 ( ρ ν ) = 𝒞 ν + 1 ( ρ ν ) .
If σ ν is a zero of 𝒞 ν ( z ) , then … Any positive zero c of the cylinder function 𝒞 ν ( x ) and any positive zero c of 𝒞 ν ( x ) such that c > | ν | are definable as continuous and increasing functions of ν : …
28: 12.9 Asymptotic Expansions for Large Variable
§12.9 Asymptotic Expansions for Large Variable
12.9.1 U ( a , z ) e 1 4 z 2 z a 1 2 s = 0 ( 1 ) s ( 1 2 + a ) 2 s s ! ( 2 z 2 ) s , | ph z | 3 4 π δ ( < 3 4 π ) ,
12.9.2 V ( a , z ) 2 π e 1 4 z 2 z a 1 2 s = 0 ( 1 2 a ) 2 s s ! ( 2 z 2 ) s , | ph z | 1 4 π δ ( < 1 4 π ) .
12.9.3 U ( a , z ) e 1 4 z 2 z a 1 2 s = 0 ( 1 ) s ( 1 2 + a ) 2 s s ! ( 2 z 2 ) s ± i 2 π Γ ( 1 2 + a ) e i π a e 1 4 z 2 z a 1 2 s = 0 ( 1 2 a ) 2 s s ! ( 2 z 2 ) s , 1 4 π + δ ± ph z 5 4 π δ ,
§12.9(ii) Bounds and Re-Expansions for the Remainder Terms
29: 12.5 Integral Representations
§12.5(i) Integrals Along the Real Line
12.5.1 U ( a , z ) = e 1 4 z 2 Γ ( 1 2 + a ) 0 t a 1 2 e 1 2 t 2 z t d t , a > 1 2 ,
§12.5(ii) Contour Integrals
§12.5(iii) Mellin–Barnes Integrals
§12.5(iv) Compendia
30: 29.16 Asymptotic Expansions
The approximating functions are exponential, trigonometric, and parabolic cylinder functions.