About the Project

Rogers–Fine identity

AdvancedHelp

(0.001 seconds)

11—20 of 153 matching pages

11: 16.4 Argument Unity
See Erdélyi et al. (1953a, §4.4(4)) for a non-terminating balanced identity. …
Rogers–Dougall Very Well-Poised Sum
§16.4(iii) Identities
Methods of deriving such identities are given by Bailey (1964), Rainville (1960), Raynal (1979), and Wilson (1978). …
12: 17.16 Mathematical Applications
More recent applications are given in Gasper and Rahman (2004, Chapter 8) and Fine (1988, Chapters 1 and 2).
13: 17 q-Hypergeometric and Related Functions
14: Bibliography B
  • R. J. Baxter (1981) Rogers-Ramanujan identities in the hard hexagon model. J. Statist. Phys. 26 (3), pp. 427–452.
  • A. Berkovich and B. M. McCoy (1998) Rogers-Ramanujan Identities: A Century of Progress from Mathematics to Physics. In Proceedings of the International Congress of Mathematicians, Vol. III (Berlin, 1998), pp. 163–172.
  • M. V. Berry and F. J. Wright (1980) Phase-space projection identities for diffraction catastrophes. J. Phys. A 13 (1), pp. 149–160.
  • J. M. Borwein and P. B. Borwein (1991) A cubic counterpart of Jacobi’s identity and the AGM. Trans. Amer. Math. Soc. 323 (2), pp. 691–701.
  • J. L. Burchnall and T. W. Chaundy (1948) The hypergeometric identities of Cayley, Orr, and Bailey. Proc. London Math. Soc. (2) 50, pp. 56–74.
  • 15: Bibliography L
  • J. Lepowsky and S. Milne (1978) Lie algebraic approaches to classical partition identities. Adv. in Math. 29 (1), pp. 15–59.
  • J. Lepowsky and R. L. Wilson (1982) A Lie theoretic interpretation and proof of the Rogers-Ramanujan identities. Adv. in Math. 45 (1), pp. 21–72.
  • 16: Guide to Searching the DLMF
    Fine Points in Math Search
    Table 3: A sample of recognized symbols
    Symbols Comments
    -= For equivalence
    17: 33.22 Particle Scattering and Atomic and Molecular Spectra
    §33.22(i) Schrödinger Equation
    With e denoting here the elementary charge, the Coulomb potential between two point particles with charges Z 1 e , Z 2 e and masses m 1 , m 2 separated by a distance s is V ( s ) = Z 1 Z 2 e 2 / ( 4 π ε 0 s ) = Z 1 Z 2 α c / s , where Z j are atomic numbers, ε 0 is the electric constant, α is the fine structure constant, and is the reduced Planck’s constant. …
    Z = m Z 1 Z 2 α c / ,
    For Z 1 Z 2 = 1 and m = m e , the electron mass, the scaling factors in (33.22.5) reduce to the Bohr radius, a 0 = / ( m e c α ) , and to a multiple of the Rydberg constant, R = m e c α 2 / ( 2 ) . …
    18: 18.39 Applications in the Physical Sciences
    18.39.22 T e 2 2 m 2 = 2 2 m 1 r 2 d d r r 2 d d r + L 2 2 m r 2 ,
    In what follows the radial and spherical radial eigenfunctions corresponding to (18.39.27) are found in four different notations, with identical eigenvalues, all of which appear in the current and past mathematical and theoretical physics and chemistry literatures, regarding this central problem. … A relativistic treatment becoming necessary as Z becomes large as corrections to the non-relativistic Schrödinger picture are of approximate order ( α Z ) 2 ( Z / 137 ) 2 , α being the dimensionless fine structure constant e 2 / ( 4 π ε 0 c ) , where c is the speed of light. … which corresponds to the exact results, in terms of Whittaker functions, of §§33.2 and 33.14, in the sense that projections onto the functions ϕ n , l ( s r ) / r , the functions bi-orthogonal to ϕ n , l ( s r ) , are identical. …
    19: 24.10 Arithmetic Properties
    where m n 0 ( mod p 1 ) . …valid when m n ( mod ( p 1 ) p ) and n 0 ( mod p 1 ) , where ( 0 ) is a fixed integer. …
    24.10.8 N 2 n 0 ( mod p ) ,
    valid for fixed integers ( 1 ) , and for all n ( 1 ) such that 2 n 0 ( mod p 1 ) and p | 2 n .
    24.10.9 E 2 n { 0 ( mod p ) if  p 1 ( mod 4 ) , 2 ( mod p ) if  p 3 ( mod 4 ) ,
    20: 27.16 Cryptography
    Thus, y x r ( mod n ) and 1 y < n . … By the Euler–Fermat theorem (27.2.8), x ϕ ( n ) 1 ( mod n ) ; hence x t ϕ ( n ) 1 ( mod n ) . But y s x r s x 1 + t ϕ ( n ) x ( mod n ) , so y s is the same as x modulo n . …