About the Project

Gauss–Chebyshev formula

AdvancedHelp

(0.002 seconds)

1—10 of 12 matching pages

1: 3.5 Quadrature
GaussChebyshev Formula
2: 18.3 Definitions
Formula (18.3.1) can be understood as a Gauss-Chebyshev quadrature, see (3.5.22), (3.5.23). …
3: 18.5 Explicit Representations
§18.5(ii) Rodrigues Formulas
Related formula: …
Chebyshev
For corresponding formulas for Chebyshev, Legendre, and the Hermite 𝐻𝑒 n polynomials apply (18.7.3)–(18.7.6), (18.7.9), and (18.7.11). …
Chebyshev
4: 18.38 Mathematical Applications
§18.38(i) Classical OP’s: Numerical Analysis
Approximation Theory
Differential Equations: Spectral Methods
Linear ordinary differential equations can be solved directly in series of Chebyshev polynomials (or other OP’s) by a method originated by Clenshaw (1957). … See Koornwinder (2007a, (3.13), (4.9), (4.10)) for explicit formulas. …
5: 18.12 Generating Functions
The z -radii of convergence will depend on x , and in first instance we will assume x [ 1 , 1 ] for Jacobi, ultraspherical, Chebyshev and Legendre, x [ 0 , ) for Laguerre, and x for Hermite. … and similar formulas as (18.12.3) and (18.12.3_5) by symmetry; compare the second row in Table 18.6.1. …
Chebyshev
18.12.7 1 z 2 1 2 x z + z 2 = 1 + 2 n = 1 T n ( x ) z n , | z | < 1 .
18.12.8 1 x z 1 2 x z + z 2 = n = 0 T n ( x ) z n , | z | < 1 .
6: Bibliography T
  • Y. Takei (1995) On the connection formula for the first Painlevé equation—from the viewpoint of the exact WKB analysis. Sūrikaisekikenkyūsho Kōkyūroku (931), pp. 70–99.
  • N. M. Temme (2003) Large parameter cases of the Gauss hypergeometric function. J. Comput. Appl. Math. 153 (1-2), pp. 441–462.
  • P. G. Todorov (1991) Explicit formulas for the Bernoulli and Euler polynomials and numbers. Abh. Math. Sem. Univ. Hamburg 61, pp. 175–180.
  • L. N. Trefethen (2008) Is Gauss quadrature better than Clenshaw-Curtis?. SIAM Rev. 50 (1), pp. 67–87.
  • A. Trellakis, A. T. Galick, and U. Ravaioli (1997) Rational Chebyshev approximation for the Fermi-Dirac integral F 3 / 2 ( x ) . Solid–State Electronics 41 (5), pp. 771–773.
  • 7: Bibliography R
  • A. Ralston (1965) Rational Chebyshev approximation by Remes’ algorithms. Numer. Math. 7 (4), pp. 322–330.
  • M. Razaz and J. L. Schonfelder (1980) High precision Chebyshev expansions for Airy functions and their derivatives. Technical report University of Birmingham Computer Centre.
  • M. Razaz and J. L. Schonfelder (1981) Remark on Algorithm 498: Airy functions using Chebyshev series approximations. ACM Trans. Math. Software 7 (3), pp. 404–405.
  • E. Ya. Remez (1957) General Computation Methods of Chebyshev Approximation. The Problems with Linear Real Parameters. Publishing House of the Academy of Science of the Ukrainian SSR, Kiev.
  • J. Rushchitsky and S. Rushchitska (2000) On Simple Waves with Profiles in the form of some Special Functions—Chebyshev-Hermite, Mathieu, Whittaker—in Two-phase Media. In Differential Operators and Related Topics, Vol. I (Odessa, 1997), Operator Theory: Advances and Applications, Vol. 117, pp. 313–322.
  • 8: Bibliography C
  • P. L. Chebyshev (1851) Sur la fonction qui détermine la totalité des nombres premiers inférieurs à une limite donnée. Mem. Ac. Sc. St. Pétersbourg 6, pp. 141–157.
  • C. W. Clenshaw (1955) A note on the summation of Chebyshev series. Math. Tables Aids Comput. 9 (51), pp. 118–120.
  • W. J. Cody (1965b) Chebyshev polynomial expansions of complete elliptic integrals. Math. Comp. 19 (90), pp. 249–259.
  • W. J. Cody (1968) Chebyshev approximations for the Fresnel integrals. Math. Comp. 22 (102), pp. 450–453.
  • W. J. Cody (1969) Rational Chebyshev approximations for the error function. Math. Comp. 23 (107), pp. 631–637.
  • 9: 18.2 General Orthogonal Polynomials
    §18.2(v) Christoffel–Darboux Formula
    Confluent Form
    For usage of the zeros of an OP in Gauss quadrature see §3.5(v). … This says roughly that the series (18.2.25) has the same pointwise convergence behavior as the same series with p n ( x ) = T n ( x ) , a Chebyshev polynomial of the first kind, see Table 18.3.1. …
    Degree lowering and raising differentiation formulas and structure relations
    10: Bibliography Z
  • A. Zarzo, J. S. Dehesa, and R. J. Yañez (1995) Distribution of zeros of Gauss and Kummer hypergeometric functions. A semiclassical approach. Ann. Numer. Math. 2 (1-4), pp. 457–472.
  • J. Zhang and J. A. Belward (1997) Chebyshev series approximations for the Bessel function Y n ( z ) of complex argument. Appl. Math. Comput. 88 (2-3), pp. 275–286.
  • M. I. Žurina and L. N. Karmazina (1966) Tables and formulae for the spherical functions P 1 / 2 + i τ m ( z ) . Translated by E. L. Albasiny, Pergamon Press, Oxford.