About the Project

Fourier transform of ultraspherical polynomials

AdvancedHelp

(0.003 seconds)

5 matching pages

1: 18.17 Integrals
Ultraspherical
18.17.18 0 1 ( 1 x 2 ) λ 1 2 C 2 n + 1 ( λ ) ( x ) sin ( x y ) d x = ( 1 ) n π Γ ( 2 n + 2 λ + 1 ) J 2 n + λ + 1 ( y ) ( 2 n + 1 ) ! Γ ( λ ) ( 2 y ) λ .
2: 18.3 Definitions
§18.3 Definitions
This table also includes the following special cases of Jacobi polynomials: ultraspherical, Chebyshev, and Legendre. … For expressions of ultraspherical, Chebyshev, and Legendre polynomials in terms of Jacobi polynomials, see §18.7(i). …For explicit power series coefficients up to n = 12 for these polynomials and for coefficients up to n = 6 for Jacobi and ultraspherical polynomials see Abramowitz and Stegun (1964, pp. 793–801). … It is also related to a discrete Fourier-cosine transform, see Britanak et al. (2007). …
3: Bibliography S
  • H. E. Salzer (1955) Orthogonal polynomials arising in the numerical evaluation of inverse Laplace transforms. Math. Tables Aids Comput. 9 (52), pp. 164–177.
  • O. A. Sharafeddin, H. F. Bowen, D. J. Kouri, and D. K. Hoffman (1992) Numerical evaluation of spherical Bessel transforms via fast Fourier transforms. J. Comput. Phys. 100 (2), pp. 294–296.
  • R. S. Strichartz (1994) A Guide to Distribution Theory and Fourier Transforms. Studies in Advanced Mathematics, CRC Press, Boca Raton, FL.
  • S. K. Suslov (2003) An Introduction to Basic Fourier Series. Developments in Mathematics, Vol. 9, Kluwer Academic Publishers, Dordrecht.
  • O. Szász (1950) On the relative extrema of ultraspherical polynomials. Boll. Un. Mat. Ital. (3) 5, pp. 125–127.
  • 4: 18.2 General Orthogonal Polynomials
    Kernel Polynomials
    §18.2(vi) Zeros
    §18.2(vii) Quadratic Transformations
    Sheffer Polynomials
    5: Bibliography L
  • D. Lemoine (1997) Optimal cylindrical and spherical Bessel transforms satisfying bound state boundary conditions. Comput. Phys. Comm. 99 (2-3), pp. 297–306.
  • M. J. Lighthill (1958) An Introduction to Fourier Analysis and Generalised Functions. Cambridge Monographs on Mechanics and Applied Mathematics, Cambridge University Press, New York.
  • L. Lorch (1984) Inequalities for ultraspherical polynomials and the gamma function. J. Approx. Theory 40 (2), pp. 115–120.
  • J. Lund (1985) Bessel transforms and rational extrapolation. Numer. Math. 47 (1), pp. 1–14.
  • J. N. Lyness (1971) Adjusted forms of the Fourier coefficient asymptotic expansion and applications in numerical quadrature. Math. Comp. 25 (113), pp. 87–104.