About the Project

Buy Cefzil -- ENDYMD.COM -- online over the counter ceftpozil price Bacterial Infection

AdvancedHelp

(0.003 seconds)

21—30 of 102 matching pages

21: Need Help?
  • Finding Things
    • How do I search within DLMF? See Guide to Searching the DLMF.

    • See also the Index or Notations sections.

    • Links to definitions, keywords, annotations and other interesting information can be found in the Info boxes by clicking or hovering the mouse over the [Uncaptioned image] icon next to each formula, table, figure, and section heading.

  • 22: 11.12 Physical Applications
    Applications of Struve functions occur in water-wave and surface-wave problems (Hirata (1975) and Ahmadi and Widnall (1985)), unsteady aerodynamics (Shaw (1985) and Wehausen and Laitone (1960)), distribution of fluid pressure over a vibrating disk (McLachlan (1934)), resistive MHD instability theory (Paris and Sy (1983)), and optical diffraction (Levine and Schwinger (1948)). …
    23: 15.18 Physical Applications
    The hypergeometric function has allowed the development of “solvable” models for one-dimensional quantum scattering through and over barriers (Eckart (1930), Bhattacharjie and Sudarshan (1962)), and generalized to include position-dependent effective masses (Dekar et al. (1999)). …
    24: 19.38 Approximations
    They are valid over parts of the complex k and ϕ planes. …
    25: Bonita V. Saunders
    As the principal developer of graphics for the DLMF, she has collaborated with other NIST mathematicians, computer scientists, and student interns to produce informative graphs and dynamic interactive visualizations of elementary and higher mathematical functions over both simply and multiply connected domains. …
    26: Philip J. Davis
    In 1957, Davis took over as Chief, Numerical Analysis Section when John Todd and his wife Olga Taussky-Todd, feeling a strong pull toward teaching and research, left to pursue full-time positions at the California Institute of Technology. … NBS mathematician Irene Stegun took over management of the A&S project which was already well on its way, and led the work to publication in 1964. … Davis’s comments about our uninspired graphs sparked the research and design of techniques for creating interactive 3D visualizations of function surfaces, which grew in sophistication as our knowledge and the technology for developing 3D graphics on the web advanced over the years. …
    27: Bibliography N
  • H. M. Nussenzveig (1992) Diffraction Effects in Semiclassical Scattering. Montroll Memorial Lecture Series in Mathematical Physics, Cambridge University Press.
  • 28: Bibliography V
  • J. Van Deun and R. Cools (2008) Integrating products of Bessel functions with an additional exponential or rational factor. Comput. Phys. Comm. 178 (8), pp. 578–590.
  • 29: 1.3 Determinants, Linear Operators, and Spectral Expansions
    The adjoint of a matrix 𝐀 is the matrix 𝐀 such that 𝐀 𝐚 , 𝐛 = 𝐚 , 𝐀 𝐛 for all 𝐚 , 𝐛 𝐄 n . …
    1.3.20 𝐮 = i = 1 n c i 𝐚 i , c i = 𝐮 , 𝐚 i .
    30: 33.22 Particle Scattering and Atomic and Molecular Spectra
    With e denoting here the elementary charge, the Coulomb potential between two point particles with charges Z 1 e , Z 2 e and masses m 1 , m 2 separated by a distance s is V ( s ) = Z 1 Z 2 e 2 / ( 4 π ε 0 s ) = Z 1 Z 2 α c / s , where Z j are atomic numbers, ε 0 is the electric constant, α is the fine structure constant, and is the reduced Planck’s constant. The reduced mass is m = m 1 m 2 / ( m 1 + m 2 ) , and at energy of relative motion E with relative orbital angular momentum , the Schrödinger equation for the radial wave function w ( s ) is given by …
    𝗄 = ( 2 m E / 2 ) 1 / 2 ,
    For Z 1 Z 2 = 1 and m = m e , the electron mass, the scaling factors in (33.22.5) reduce to the Bohr radius, a 0 = / ( m e c α ) , and to a multiple of the Rydberg constant, R = m e c α 2 / ( 2 ) . …