About the Project

.ued在线最靠谱的博彩平台『世界杯佣金分红55%,咨询专员:@ky975』.ic6.k2q1w9-y0aqm00ek

AdvancedHelp

(0.003 seconds)

11—20 of 227 matching pages

11: 12.2 Differential Equations
Standard solutions are U ( a , ± z ) , V ( a , ± z ) , U ¯ ( a , ± x ) (not complex conjugate), U ( a , ± i z ) for (12.2.2); W ( a , ± x ) for (12.2.3); D ν ( ± z ) for (12.2.4), where …
§12.2(vi) Solution U ¯ ( a , x ) ; Modulus and Phase Functions
When z ( = x ) is real the solution U ¯ ( a , x ) is defined by …unless a = 1 2 , 3 2 , , in which case U ¯ ( a , x ) is undefined. …Properties of U ¯ ( a , x ) follow immediately from those of V ( a , x ) via (12.2.21). …
12: 32.3 Graphics
Here u = u k ( x ; ν ) is the solution of …
32.3.3 u k U ( ν 1 2 , x ) , x + .
32.3.4 w ( x ) = 2 2 u k 2 ( 2 x , ν ) ,
If we set d 2 u / d x 2 = 0 in (32.3.2) and solve for u , then …
See accompanying text
Figure 32.3.7: u k ( x ; 1 2 ) for 12 x 4 with k = 0.33554 691 , 0.33554 692 . …The parabolas u 2 + 1 2 x = 0 , u 2 + 1 6 x = 0 are shown in black and green, respectively. Magnify
13: 4.21 Identities
4.21.8 cos u + cos v = 2 cos ( u + v 2 ) cos ( u v 2 ) ,
4.21.15 2 sin u sin v = cos ( u v ) cos ( u + v ) ,
4.21.16 2 cos u cos v = cos ( u v ) + cos ( u + v ) ,
4.21.17 2 sin u cos v = sin ( u v ) + sin ( u + v ) .
4.21.18 sin 2 u sin 2 v = sin ( u + v ) sin ( u v ) ,
14: 12.8 Recurrence Relations and Derivatives
12.8.1 z U ( a , z ) U ( a 1 , z ) + ( a + 1 2 ) U ( a + 1 , z ) = 0 ,
12.8.2 U ( a , z ) + 1 2 z U ( a , z ) + ( a + 1 2 ) U ( a + 1 , z ) = 0 ,
12.8.3 U ( a , z ) 1 2 z U ( a , z ) + U ( a 1 , z ) = 0 ,
12.8.4 2 U ( a , z ) + U ( a 1 , z ) + ( a + 1 2 ) U ( a + 1 , z ) = 0 .
(12.8.1)–(12.8.4) are also satisfied by U ¯ ( a , z ) . …
15: 12.21 Software
16: 3.9 Acceleration of Convergence
3.9.9 t n , 2 k = H k + 1 ( s n ) H k ( Δ 2 s n ) , n = 0 , 1 , 2 , ,
3.9.10 H m ( u n ) = | u n u n + 1 u n + m 1 u n + 1 u n + 2 u n + m u n + m 1 u n + m u n + 2 m 2 | .
For examples and other transformations for convergent sequences and series, see Wimp (1981, pp. 156–199), Brezinski and Redivo Zaglia (1991, pp. 55–72), and Sidi (2003, Chapters 6, 12–13, 15–16, 19–24, and pp. 483–492). …
17: 7.19 Voigt Functions
7.19.4 H ( a , u ) = a π e t 2 d t ( u t ) 2 + a 2 = 1 a π 𝖴 ( u a , 1 4 a 2 ) .
H ( a , u ) is sometimes called the line broadening function; see, for example, Finn and Mugglestone (1965). …
See accompanying text
Figure 7.19.1: Voigt function 𝖴 ( x , t ) , t = 0.1 , 2.5 , 5 , 10 . Magnify
𝖴 ( x , t ) = 𝖴 ( x , t ) ,
0 < 𝖴 ( x , t ) 1 ,
18: 32.15 Orthogonal Polynomials
Then u n ( z ) = ( a n ( z ) ) 2 satisfies the nonlinear recurrence relation
32.15.3 ( u n + 1 + u n + u n 1 ) u n = n 2 z u n ,
19: 4.35 Identities
4.35.7 cosh u + cosh v = 2 cosh ( u + v 2 ) cosh ( u v 2 ) ,
4.35.14 2 sinh u sinh v = cosh ( u + v ) cosh ( u v ) ,
4.35.15 2 cosh u cosh v = cosh ( u + v ) + cosh ( u v ) ,
4.35.16 2 sinh u cosh v = sinh ( u + v ) + sinh ( u v ) .
4.35.17 sinh 2 u sinh 2 v = sinh ( u + v ) sinh ( u v ) ,
20: 12.20 Approximations
Luke (1969b, pp. 25 and 35) gives Chebyshev-series expansions for the confluent hypergeometric functions U ( a , b , x ) and M ( a , b , x ) 13.2(i)) whose regions of validity include intervals with endpoints x = and x = 0 , respectively. As special cases of these results a Chebyshev-series expansion for U ( a , x ) valid when λ x < follows from (12.7.14), and Chebyshev-series expansions for U ( a , x ) and V ( a , x ) valid when 0 x λ follow from (12.4.1), (12.4.2), (12.7.12), and (12.7.13). …