About the Project

.巴西对塞尔维亚世界杯_『wn4.com_』世界杯ipad用啥看_w6n2c9o_2022年11月30日1时9分10秒_n1z1jllvb_gov_hk

AdvancedHelp

(0.006 seconds)

11—20 of 804 matching pages

11: 24.20 Tables
Abramowitz and Stegun (1964, Chapter 23) includes exact values of k = 1 m k n , m = 1 ( 1 ) 100 , n = 1 ( 1 ) 10 ; k = 1 k n , k = 1 ( 1 ) k 1 k n , k = 0 ( 2 k + 1 ) n , n = 1 , 2 , , 20D; k = 0 ( 1 ) k ( 2 k + 1 ) n , n = 1 , 2 , , 18D. Wagstaff (1978) gives complete prime factorizations of N n and E n for n = 20 ( 2 ) 60 and n = 8 ( 2 ) 42 , respectively. … For information on tables published before 1961 see Fletcher et al. (1962, v. 1, §4) and Lebedev and Fedorova (1960, Chapters 11 and 14).
12: 26.4 Lattice Paths: Multinomial Coefficients and Set Partitions
( n n 1 , n 2 , , n k ) is the number of ways of placing n = n 1 + n 2 + + n k distinct objects into k labeled boxes so that there are n j objects in the j th box. … These are given by the following equations in which a 1 , a 2 , , a n are nonnegative integers such that … M 1 is the multinominal coefficient (26.4.2): …For each n all possible values of a 1 , a 2 , , a n are covered. … where the summation is over all nonnegative integers n 1 , n 2 , , n k such that n 1 + n 2 + + n k = n . …
13: 26.16 Multiset Permutations
Let S = { 1 a 1 , 2 a 2 , , n a n } be the multiset that has a j copies of j , 1 j n . 𝔖 S denotes the set of permutations of S for all distinct orderings of the a 1 + a 2 + + a n integers. The number of elements in 𝔖 S is the multinomial coefficient (§26.4) ( a 1 + a 2 + + a n a 1 , a 2 , , a n ) . … The q -multinomial coefficient is defined in terms of Gaussian polynomials (§26.9(ii)) by …and again with S = { 1 a 1 , 2 a 2 , , n a n } we have …
14: 30.7 Graphics
See accompanying text
Figure 30.7.1: Eigenvalues λ n 0 ( γ 2 ) , n = 0 , 1 , 2 , 3 , 10 γ 2 10 . Magnify
See accompanying text
Figure 30.7.2: Eigenvalues λ n 1 ( γ 2 ) n = 1 , 2 , 3 , 4 , 10 γ 2 10 . Magnify
See accompanying text
Figure 30.7.4: Eigenvalues λ n 10 ( γ 2 ) , n = 10 , 11 , 12 , 13 , 50 γ 2 150 . Magnify
See accompanying text
Figure 30.7.7: 𝖯𝗌 n 1 ( x , 30 ) , n = 1 , 2 , 3 , 4 , 1 x 1 . Magnify
See accompanying text
Figure 30.7.8: 𝖯𝗌 n 1 ( x , 30 ) , n = 1 , 2 , 3 , 4 , 1 x 1 . Magnify
15: 9.18 Tables
  • Miller (1946) tabulates Ai ( x ) , Ai ( x ) for x = 20 ( .01 ) 2 ; log 10 Ai ( x ) , Ai ( x ) / Ai ( x ) for x = 0 ( .1 ) 25 ( 1 ) 75 ; Bi ( x ) , Bi ( x ) for x = 10 ( .1 ) 2.5 ; log 10 Bi ( x ) , Bi ( x ) / Bi ( x ) for x = 0 ( .1 ) 10 ; M ( x ) , N ( x ) , θ ( x ) , ϕ ( x ) (respectively F ( x ) , G ( x ) , χ ( x ) , ψ ( x ) ) for x = 80 ( 1 ) 30 ( .1 ) 0 . Precision is generally 8D; slightly less for some of the auxiliary functions. Extracts from these tables are included in Abramowitz and Stegun (1964, Chapter 10), together with some auxiliary functions for large arguments.

  • Miller (1946) tabulates a k , Ai ( a k ) , a k , Ai ( a k ) , k = 1 ( 1 ) 50 ; b k , Bi ( b k ) , b k , Bi ( b k ) , k = 1 ( 1 ) 20 . Precision is 8D. Entries for k = 1 ( 1 ) 20 are reproduced in Abramowitz and Stegun (1964, Chapter 10).

  • Rothman (1954b) tabulates 0 x Ai ( t ) d t and 0 x Bi ( t ) d t for x = 10 ( .1 ) and 10 ( .1 ) 2 , respectively; 7D. The entries in the columns headed 0 x Ai ( x ) d x and 0 x Bi ( x ) d x all have the wrong sign. The tables are reproduced in Abramowitz and Stegun (1964, Chapter 10), and the sign errors are corrected in later reprintings.

  • Zhang and Jin (1996, p. 338) tabulates 0 x Ai ( t ) d t and 0 x Bi ( t ) d t for x = 10 ( .2 ) 10 to 8D or 8S.

  • National Bureau of Standards (1958) tabulates A 0 ( x ) π Hi ( x ) and A 0 ( x ) π Hi ( x ) for x = 0 ( .01 ) 1 ( .02 ) 5 ( .05 ) 11 and 1 / x = 0.01 ( .01 ) 0.1 ; 0 x A 0 ( t ) d t for x = 0.5 , 1 ( 1 ) 11 . Precision is 8D.

  • 16: 34.1 Special Notation
    ( j 1 j 2 j 3 m 1 m 2 m 3 ) ,
    { j 1 j 2 j 3 l 1 l 2 l 3 } ,
    { j 11 j 12 j 13 j 21 j 22 j 23 j 31 j 32 j 33 } .
    An often used alternative to the 3 j symbol is the Clebsch–Gordan coefficient
    34.1.1 ( j 1 m 1 j 2 m 2 | j 1 j 2 j 3 m 3 ) = ( 1 ) j 1 j 2 + m 3 ( 2 j 3 + 1 ) 1 2 ( j 1 j 2 j 3 m 1 m 2 m 3 ) ;
    17: 34.3 Basic Properties: 3 j Symbol
    When any one of j 1 , j 2 , j 3 is equal to 0 , 1 2 , or 1 , the 3 j symbol has a simple algebraic form. …For these and other results, and also cases in which any one of j 1 , j 2 , j 3 is 3 2 or 2 , see Edmonds (1974, pp. 125–127). … Even permutations of columns of a 3 j symbol leave it unchanged; odd permutations of columns produce a phase factor ( 1 ) j 1 + j 2 + j 3 , for example,
    34.3.8 ( j 1 j 2 j 3 m 1 m 2 m 3 ) = ( j 2 j 3 j 1 m 2 m 3 m 1 ) = ( j 3 j 1 j 2 m 3 m 1 m 2 ) ,
    For the polynomials P l see §18.3, and for the function Y l , m see §14.30. …
    18: 18.8 Differential Equations
    Table 18.8.1: Classical OP’s: differential equations A ( x ) f ′′ ( x ) + B ( x ) f ( x ) + C ( x ) f ( x ) + λ n f ( x ) = 0 .
    # f ( x ) A ( x ) B ( x ) C ( x ) λ n
    11 e n 1 x x + 1 L n 1 ( 2 + 1 ) ( 2 n 1 x ) 1 0 2 x ( + 1 ) x 2 1 n 2
    12 H n ( x ) 1 2 x 0 2 n
    14 𝐻𝑒 n ( x ) 1 x 0 n
    Item 11 of Table 18.8.1 yields (18.39.36) for Z = 1 .
    19: 1.12 Continued Fractions
    A n and B n are called the n th (canonical) numerator and denominator respectively. … b 0 + a 1 b 1 + a 2 b 2 + is equivalent to b 0 + a 1 b 1 + a 2 b 2 + if there is a sequence { d n } n = 0 , d 0 = 1 ,
    d n 0 , such that … Define … The continued fraction a 1 b 1 + a 2 b 2 + converges when … Then the convergents C n satisfy …
    20: 3.6 Linear Difference Equations
    Given numerical values of w 0 and w 1 , the solution w n of the equation … beginning with e 0 = w 0 . … We apply the algorithm to compute 𝐄 n ( 1 ) to 8S for the range n = 1 , 2 , , 10 , beginning with the value 𝐄 0 ( 1 ) = 0.56865  663 obtained from the Maclaurin series expansion (§11.10(iii)). … The values of w n for n = 1 , 2 , , 10 are the wanted values of 𝐄 n ( 1 ) . (It should be observed that for n > 10 , however, the w n are progressively poorer approximations to 𝐄 n ( 1 ) : the underlined digits are in error.) …