5.7 Series Expansions5.9 Integral Representations

§5.8 Infinite Products

5.8.1\mathop{\Gamma\/}\nolimits\!\left(z\right)=\lim _{{k\to\infty}}\frac{k!k^{z}}{z(z+1)\cdots(z+k)},z\neq 0,-1,-2,\dots,
5.8.2\frac{1}{\mathop{\Gamma\/}\nolimits\!\left(z\right)}=ze^{{\EulerConstant z}}\prod _{{k=1}}^{\infty}\left(1+\frac{z}{k}\right)e^{{-z/k}},
5.8.3\left|\frac{\mathop{\Gamma\/}\nolimits\!\left(x\right)}{\mathop{\Gamma\/}\nolimits\!\left(x+iy\right)}\right|^{2}=\prod _{{k=0}}^{\infty}\left(1+\frac{y^{2}}{(x+k)^{2}}\right),x\neq 0,-1,\dots.

If

5.8.4\sum _{{k=1}}^{m}a_{k}=\sum _{{k=1}}^{m}b_{k},

then

5.8.5\prod _{{k=0}}^{\infty}\frac{(a_{1}+k)(a_{2}+k)\cdots(a_{m}+k)}{(b_{1}+k)(b_{2}+k)\cdots(b_{m}+k)}=\frac{\mathop{\Gamma\/}\nolimits\!\left(b_{1}\right)\mathop{\Gamma\/}\nolimits\!\left(b_{2}\right)\cdots\mathop{\Gamma\/}\nolimits\!\left(b_{m}\right)}{\mathop{\Gamma\/}\nolimits\!\left(a_{1}\right)\mathop{\Gamma\/}\nolimits\!\left(a_{2}\right)\cdots\mathop{\Gamma\/}\nolimits\!\left(a_{m}\right)},

provided that none of the b_{k} is zero or a negative integer.