30.2 Differential Equations30.4 Functions of the First Kind

§30.3 Eigenvalues

Contents

§30.3(i) Definition

With \mu=m=0,1,2,\dots, the spheroidal wave functions \mathop{\mathsf{Ps}^{{m}}_{{n}}\/}\nolimits\!\left(x,\gamma^{2}\right) are solutions of Equation (30.2.1) which are bounded on (-1,1), or equivalently, which are of the form (1-x^{2})^{{\frac{1}{2}m}}g(x) where g(z) is an entire function of z. These solutions exist only for eigenvalues \mathop{\lambda^{{m}}_{{n}}\/}\nolimits\!\left(\gamma^{2}\right), n=m,m+1,m+2,\dots, of the parameter \lambda.

§30.3(iii) Transcendental Equation

If p is an even nonnegative integer, then the continued-fraction equation

30.3.5\beta _{p}-\lambda-\cfrac{\alpha _{{p-2}}\gamma _{p}}{\beta _{{p-2}}-\lambda-\cfrac{\alpha _{{p-4}}\gamma _{{p-2}}}{\beta _{{p-4}}-\lambda-\cdots}}=\cfrac{\alpha _{p}\gamma _{{p+2}}}{\beta _{{p+2}}-\lambda-\cfrac{\alpha _{{p+2}}\gamma _{{p+4}}}{\beta _{{p+4}}-\lambda-\cdots}},

where \alpha _{k}, \beta _{k}, \gamma _{k} are defined by

30.3.6
\alpha _{k}=-(k+1)(k+2),
\beta _{k}=(m+k)(m+k+1)-\gamma^{2},
\gamma _{k}=\gamma^{2},

has the solutions \lambda=\mathop{\lambda^{{m}}_{{m+2j}}\/}\nolimits\!\left(\gamma^{2}\right), j=0,1,2,\dots. If p is an odd positive integer, then Equation (30.3.5) has the solutions \lambda=\mathop{\lambda^{{m}}_{{m+2j+1}}\/}\nolimits\!\left(\gamma^{2}\right), j=0,1,2,\dots. If p=0 or p=1, the finite continued-fraction on the left-hand side of (30.3.5) equals 0; if p>1 its last denominator is \beta _{0}-\lambda or \beta _{1}-\lambda.

In equation (30.3.5) we can also use

30.3.7
\alpha _{k}=\gamma^{2}\frac{(k+2m+1)(k+2m+2)}{(2k+2m+3)(2k+2m+5)},
\beta _{k}=(k+m)(k+m+1)-2\gamma^{2}\frac{(k+m)(k+m+1)-1+m^{2}}{(2k+2m-1)(2k+2m+3)},
\gamma _{k}=\gamma^{2}\frac{(k-1)k}{(2k+2m-3)(2k+2m-1)}.

§30.3(iv) Power-Series Expansion

30.3.8\mathop{\lambda^{{m}}_{{n}}\/}\nolimits\!\left(\gamma^{2}\right)=\sum _{{k=0}}^{{\infty}}\ell _{{2k}}\gamma^{{2k}},|\gamma^{2}|<r_{n}^{m}.

For values of r_{n}^{m} see Meixner et al. (1980, p. 109).

30.3.9
\ell _{0}=n(n+1),
2\ell _{2}=-1-\frac{(2m-1)(2m+1)}{(2n-1)(2n+3)},
2\ell _{4}=\frac{(n-m-1)(n-m)(n+m-1)(n+m)}{(2n-3)(2n-1)^{3}(2n+1)}-\frac{(n-m+1)(n-m+2)(n+m+1)(n+m+2)}{(2n+1)(2n+3)^{3}(2n+5)}.
30.3.10\ell _{6}=(4m^{2}-1)\left(\frac{(n-m+1)(n-m+2)(n+m+1)(n+m+2)}{(2n-1)(2n+1)(2n+3)^{5}(2n+5)(2n+7)}-\frac{(n-m-1)(n-m)(n+m-1)(n+m)}{(2n-5)(2n-3)(2n-1)^{5}(2n+1)(2n+3)}\right),
30.3.11\ell _{8}=2(4m^{2}-1)^{2}A+\frac{1}{16}B+\frac{1}{8}C+\frac{1}{2}D,
30.3.12
A=\frac{(n-m-1)(n-m)(n+m-1)(n+m)}{(2n-5)^{2}(2n-3)(2n-1)^{7}(2n+1)(2n+3)^{2}}-\frac{(n-m+1)(n-m+2)(n+m+1)(n+m+2)}{(2n-1)^{2}(2n+1)(2n+3)^{7}(2n+5)(2n+7)^{2}},
B=\frac{(n-m-3)(n-m-2)(n-m-1)(n-m)(n+m-3)(n+m-2)(n+m-1)(n+m)}{(2n-7)(2n-5)^{2}(2n-3)^{3}(2n-1)^{4}(2n+1)}-\frac{(n-m+1)(n-m+2)(n-m+3)(n-m+4)(n+m+1)(n+m+2)(n+m+3)(n+m+4)}{(2n+1)(2n+3)^{4}(2n+5)^{3}(2n+7)^{2}(2n+9)},
C=\frac{(n-m+1)^{2}(n-m+2)^{2}(n+m+1)^{2}(n+m+2)^{2}}{(2n+1)^{2}(2n+3)^{7}(2n+5)^{2}}-\frac{(n-m-1)^{2}(n-m)^{2}(n+m-1)^{2}(n+m)^{2}}{(2n-3)^{2}(2n-1)^{7}(2n+1)^{2}},
D=\frac{(n-m-1)(n-m)(n-m+1)(n-m+2)(n+m-1)(n+m)(n+m+1)(n+m+2)}{(2n-3)(2n-1)^{4}(2n+1)^{2}(2n+3)^{4}(2n+5)}.

Further coefficients can be found with the Maple program SWF9; see §30.18(i).