23.3 Differential Equations23.5 Special Lattices

§23.4 Graphics

Contents

§23.4(i) Real Variables

Line graphs of the Weierstrass functions \mathop{\wp\/}\nolimits\!\left(x\right), \mathop{\zeta\/}\nolimits\!\left(x\right), and \mathop{\sigma\/}\nolimits\!\left(x\right), illustrating the lemniscatic and equianharmonic cases. (The figures in this subsection may be compared with the figures in §22.3(i).)

See accompanying text
Figure 23.4.1: \mathop{\wp\/}\nolimits\!\left(x;g_{2},0\right) for 0\leq x\leq 9, g_{2} = 0.1, 0.2, 0.5, 0.8. (Lemniscatic case.) Magnify
See accompanying text
Figure 23.4.2: \mathop{\wp\/}\nolimits\!\left(x;0,g_{3}\right) for 0\leq x\leq 9, g_{3} = 0.1, 0.2, 0.5, 0.8. (Equianharmonic case.) Magnify
See accompanying text
Figure 23.4.3: \mathop{\zeta\/}\nolimits\!\left(x;g_{2},0\right) for 0\leq x\leq 8, g_{2} = 0.1, 0.2, 0.5, 0.8. (Lemniscatic case.) Magnify
See accompanying text
Figure 23.4.4: \mathop{\zeta\/}\nolimits\!\left(x;0,g_{3}\right) for 0\leq x\leq 8, g_{3} = 0.1, 0.2, 0.5, 0.8. (Equianharmonic case.) Magnify
See accompanying text
Figure 23.4.5: \mathop{\sigma\/}\nolimits\!\left(x;g_{2},0\right) for -5\leq x\leq 5, g_{2} = 0.1, 0.2, 0.5, 0.8. (Lemniscatic case.) Magnify

§23.4(ii) Complex Variables

Surfaces for the Weierstrass functions \mathop{\wp\/}\nolimits\!\left(z\right), \mathop{\zeta\/}\nolimits\!\left(z\right), and \mathop{\sigma\/}\nolimits\!\left(z\right). Height corresponds to the absolute value of the function and color to the phase. See also About Color Map. (The figures in this subsection may be compared with the figures in §22.3(iii).)

Figure 23.4.12: \mathop{\wp\/}\nolimits\!\left(3.7;a+ib,0\right) for -5\leq a\leq 3, -4\leq b\leq 4. There is a double zero at a=b=0 and double poles on the real axis. Magnify
Choose format for 3D interactive visualization
Format
 
Please see Visualization Help for details, and Customize to change your choice, or for other customizations.