About the Project

zeros%20of%20classical%20orthogonal%20polynomials

AdvancedHelp

(0.006 seconds)

1—10 of 12 matching pages

1: Bibliography D
  • K. Dilcher (2008) On multiple zeros of Bernoulli polynomials. Acta Arith. 134 (2), pp. 149–155.
  • D. K. Dimitrov and G. P. Nikolov (2010) Sharp bounds for the extreme zeros of classical orthogonal polynomials. J. Approx. Theory 162 (10), pp. 1793–1804.
  • G. C. Donovan, J. S. Geronimo, and D. P. Hardin (1999) Orthogonal polynomials and the construction of piecewise polynomial smooth wavelets. SIAM J. Math. Anal. 30 (5), pp. 1029–1056.
  • B. Döring (1966) Complex zeros of cylinder functions. Math. Comp. 20 (94), pp. 215–222.
  • K. Driver and K. Jordaan (2013) Inequalities for extreme zeros of some classical orthogonal and q -orthogonal polynomials. Math. Model. Nat. Phenom. 8 (1), pp. 48–59.
  • 2: Bibliography
  • W. A. Al-Salam and L. Carlitz (1965) Some orthogonal q -polynomials. Math. Nachr. 30, pp. 47–61.
  • W. A. Al-Salam (1990) Characterization theorems for orthogonal polynomials. In Orthogonal Polynomials (Columbus, OH, 1989), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., Vol. 294, pp. 1–24.
  • M. Alam (1979) Zeros of Stieltjes and Van Vleck polynomials. Trans. Amer. Math. Soc. 252, pp. 197–204.
  • G. E. Andrews and R. Askey (1985) Classical Orthogonal Polynomials. In Orthogonal Polynomials and Applications, C. Brezinski, A. Draux, A. P. Magnus, P. Maroni, and A. Ronveaux (Eds.), Lecture Notes in Math., Vol. 1171, pp. 36–62.
  • R. Askey and J. Wilson (1985) Some basic hypergeometric orthogonal polynomials that generalize Jacobi polynomials. Mem. Amer. Math. Soc. 54 (319), pp. iv+55.
  • 3: Bibliography B
  • E. Bannai (1990) Orthogonal Polynomials in Coding Theory and Algebraic Combinatorics. In Orthogonal Polynomials (Columbus, OH, 1989), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., Vol. 294, pp. 25–53.
  • P. Bleher and A. Its (1999) Semiclassical asymptotics of orthogonal polynomials, Riemann-Hilbert problem, and universality in the matrix model. Ann. of Math. (2) 150 (1), pp. 185–266.
  • R. Bo and R. Wong (1999) A uniform asymptotic formula for orthogonal polynomials associated with exp ( x 4 ) . J. Approx. Theory 98, pp. 146–166.
  • C. Brezinski (1980) Padé-type Approximation and General Orthogonal Polynomials. International Series of Numerical Mathematics, Vol. 50, Birkhäuser Verlag, Basel.
  • P. L. Butzer and T. H. Koornwinder (2019) Josef Meixner: his life and his orthogonal polynomials. Indag. Math. (N.S.) 30 (1), pp. 250–264.
  • 4: Bibliography I
  • M. E. H. Ismail (2000a) An electrostatics model for zeros of general orthogonal polynomials. Pacific J. Math. 193 (2), pp. 355–369.
  • M. E. H. Ismail (2000b) More on electrostatic models for zeros of orthogonal polynomials. Numer. Funct. Anal. Optim. 21 (1-2), pp. 191–204.
  • M. E. H. Ismail (2005) Classical and Quantum Orthogonal Polynomials in One Variable. Encyclopedia of Mathematics and its Applications, Vol. 98, Cambridge University Press, Cambridge.
  • M. E. H. Ismail (2009) Classical and Quantum Orthogonal Polynomials in One Variable. Encyclopedia of Mathematics and its Applications, Vol. 98, Cambridge University Press, Cambridge.
  • M. E. H. Ismail and X. Li (1992) Bound on the extreme zeros of orthogonal polynomials. Proc. Amer. Math. Soc. 115 (1), pp. 131–140.
  • 5: Bibliography M
  • I. G. Macdonald (1998) Symmetric Functions and Orthogonal Polynomials. University Lecture Series, Vol. 12, American Mathematical Society, Providence, RI.
  • I. G. Macdonald (2000) Orthogonal polynomials associated with root systems. Sém. Lothar. Combin. 45, pp. Art. B45a, 40 pp. (electronic).
  • A. P. Magnus (1995) Painlevé-type differential equations for the recurrence coefficients of semi-classical orthogonal polynomials. J. Comput. Appl. Math. 57 (1-2), pp. 215–237.
  • R. Milson (2017) Exceptional orthogonal polynomials.
  • D. S. Moak (1981) The q -analogue of the Laguerre polynomials. J. Math. Anal. Appl. 81 (1), pp. 20–47.
  • 6: Bibliography V
  • J. van de Lune, H. J. J. te Riele, and D. T. Winter (1986) On the zeros of the Riemann zeta function in the critical strip. IV. Math. Comp. 46 (174), pp. 667–681.
  • N. Ja. Vilenkin and A. U. Klimyk (1992) Representation of Lie Groups and Special Functions. Volume 3: Classical and Quantum Groups and Special Functions. Mathematics and its Applications (Soviet Series), Vol. 75, Kluwer Academic Publishers Group, Dordrecht.
  • H. Volkmer (2004a) Error estimates for Rayleigh-Ritz approximations of eigenvalues and eigenfunctions of the Mathieu and spheroidal wave equation. Constr. Approx. 20 (1), pp. 39–54.
  • H. Volkmer (2008) Approximation of eigenvalues of some differential equations by zeros of orthogonal polynomials. J. Comput. Appl. Math. 213 (2), pp. 488–500.
  • M. N. Vrahatis, T. N. Grapsa, O. Ragos, and F. A. Zafiropoulos (1997a) On the localization and computation of zeros of Bessel functions. Z. Angew. Math. Mech. 77 (6), pp. 467–475.
  • 7: Bibliography G
  • G. Gasper (1977) Positive sums of the classical orthogonal polynomials. SIAM J. Math. Anal. 8 (3), pp. 423–447.
  • W. Gautschi (1994) Algorithm 726: ORTHPOL — a package of routines for generating orthogonal polynomials and Gauss-type quadrature rules. ACM Trans. Math. Software 20 (1), pp. 21–62.
  • W. Gautschi (1996) Orthogonal Polynomials: Applications and Computation. In Acta Numerica, 1996, A. Iserles (Ed.), Acta Numerica, Vol. 5, pp. 45–119.
  • W. Gautschi (2004) Orthogonal Polynomials: Computation and Approximation. Numerical Mathematics and Scientific Computation, Oxford University Press, New York.
  • W. Gautschi (2009) Variable-precision recurrence coefficients for nonstandard orthogonal polynomials. Numer. Algorithms 52 (3), pp. 409–418.
  • 8: Bibliography K
  • E. G. Kalnins and W. Miller (1993) Orthogonal Polynomials on n -spheres: Gegenbauer, Jacobi and Heun. In Topics in Polynomials of One and Several Variables and their Applications, pp. 299–322.
  • W. Koepf (1999) Orthogonal polynomials and computer algebra. In Recent developments in complex analysis and computer algebra (Newark, DE, 1997), R. P. Gilbert, J. Kajiwara, and Y. S. Xu (Eds.), Int. Soc. Anal. Appl. Comput., Vol. 4, Dordrecht, pp. 205–234.
  • T. H. Koornwinder (1975c) Two-variable Analogues of the Classical Orthogonal Polynomials. In Theory and Application of Special Functions, R. A. Askey (Ed.), pp. 435–495.
  • T. H. Koornwinder (2006) Lowering and Raising Operators for Some Special Orthogonal Polynomials. In Jack, Hall-Littlewood and Macdonald Polynomials, Contemp. Math., Vol. 417, pp. 227–238.
  • A. B. J. Kuijlaars and R. Milson (2015) Zeros of exceptional Hermite polynomials. J. Approx. Theory 200, pp. 28–39.
  • 9: Bibliography L
  • D. J. Leeming (1989) The real zeros of the Bernoulli polynomials. J. Approx. Theory 58 (2), pp. 124–150.
  • D. A. Leonard (1982) Orthogonal polynomials, duality and association schemes. SIAM J. Math. Anal. 13 (4), pp. 656–663.
  • E. Levin and D. S. Lubinsky (2001) Orthogonal Polynomials for Exponential Weights. CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC, 4, Springer-Verlag, New York.
  • X. Li and R. Wong (2001) On the asymptotics of the Meixner-Pollaczek polynomials and their zeros. Constr. Approx. 17 (1), pp. 59–90.
  • J. L. López and N. M. Temme (1999a) Approximation of orthogonal polynomials in terms of Hermite polynomials. Methods Appl. Anal. 6 (2), pp. 131–146.
  • 10: Bibliography R
  • M. Rahman (2001) The Associated Classical Orthogonal Polynomials. In Special Functions 2000: Current Perspective and Future Directions (Tempe, AZ), NATO Sci. Ser. II Math. Phys. Chem., Vol. 30, pp. 255–279.
  • J. Raynal (1979) On the definition and properties of generalized 6 - j  symbols. J. Math. Phys. 20 (12), pp. 2398–2415.
  • W. P. Reinhardt (2021a) Erratum to:Relationships between the zeros, weights, and weight functions of orthogonal polynomials: Derivative rule approach to Stieltjes and spectral imaging. Computing in Science and Engineering 23 (4), pp. 91.
  • W. P. Reinhardt (2021b) Relationships between the zeros, weights, and weight functions of orthogonal polynomials: Derivative rule approach to Stieltjes and spectral imaging. Computing in Science and Engineering 23 (3), pp. 56–64.
  • Hans-J. Runckel (1971) On the zeros of the hypergeometric function. Math. Ann. 191 (1), pp. 53–58.