About the Project

tables of zeros

AdvancedHelp

(0.001 seconds)

31—40 of 62 matching pages

31: Bibliography G
  • M. Geller and E. W. Ng (1969) A table of integrals of the exponential integral. J. Res. Nat. Bur. Standards Sect. B 73B, pp. 191–210.
  • J. W. L. Glaisher (1940) Number-Divisor Tables. British Association Mathematical Tables, Vol. VIII, Cambridge University Press, Cambridge, England.
  • H. Gupta, C. E. Gwyther, and J. C. P. Miller (1958) Tables of Partitions. Royal Society Math. Tables, Vol. 4, Cambridge University Press.
  • H. Gupta (1935) A table of partitions. Proc. London Math. Soc. (2) 39, pp. 142–149.
  • H. Gupta (1937) A table of partitions (II). Proc. London Math. Soc. (2) 42, pp. 546–549.
  • 32: 13.30 Tables
    §13.30 Tables
  • Slater (1960) tabulates M ( a , b , x ) for a = 1 ( .1 ) 1 , b = 0.1 ( .1 ) 1 , and x = 0.1 ( .1 ) 10 , 7–9S; M ( a , b , 1 ) for a = 11 ( .2 ) 2 and b = 4 ( .2 ) 1 , 7D; the smallest positive x -zero of M ( a , b , x ) for a = 4 ( .1 ) 0.1 and b = 0.1 ( .1 ) 2.5 , 7D.

  • Abramowitz and Stegun (1964, Chapter 13) tabulates M ( a , b , x ) for a = 1 ( .1 ) 1 , b = 0.1 ( .1 ) 1 , and x = 0.1 ( .1 ) 1 ( 1 ) 10 , 8S. Also the smallest positive x -zero of M ( a , b , x ) for a = 1 ( .1 ) 0.1 and b = 0.1 ( .1 ) 1 , 7D.

  • For other tables prior to 1961 see Fletcher et al. (1962) and Lebedev and Fedorova (1960).
    33: 29.12 Definitions
    In consequence they are doubly-periodic meromorphic functions of z . … The prefixes u , s , c , d , 𝑠𝑐 , 𝑠𝑑 , 𝑐𝑑 , 𝑠𝑐𝑑 indicate the type of the polynomial form of the Lamé polynomial; compare the 3rd and 4th columns in Table 29.12.1. … With the substitution ξ = sn 2 ( z , k ) every Lamé polynomial in Table 29.12.1 can be written in the form …
    §29.12(iii) Zeros
    Let ξ 1 , ξ 2 , , ξ n denote the zeros of the polynomial P in (29.12.9) arranged according to …
    34: 14.33 Tables
    §14.33 Tables
  • Zhang and Jin (1996, Chapter 4) tabulates 𝖯 n ( x ) for n = 2 ( 1 ) 5 , 10 , x = 0 ( .1 ) 1 , 7D; 𝖯 n ( cos θ ) for n = 1 ( 1 ) 4 , 10 , θ = 0 ( 5 ) 90 , 8D; 𝖰 n ( x ) for n = 0 ( 1 ) 2 , 10 , x = 0 ( .1 ) 0.9 , 8S; 𝖰 n ( cos θ ) for n = 0 ( 1 ) 3 , 10 , θ = 0 ( 5 ) 90 , 8D; 𝖯 n m ( x ) for m = 1 ( 1 ) 4 , n m = 0 ( 1 ) 2 , n = 10 , x = 0 , 0.5 , 8S; 𝖰 n m ( x ) for m = 1 ( 1 ) 4 , n = 0 ( 1 ) 2 , 10 , 8S; 𝖯 ν m ( cos θ ) for m = 0 ( 1 ) 3 , ν = 0 ( .25 ) 5 , θ = 0 ( 15 ) 90 , 5D; P n ( x ) for n = 2 ( 1 ) 5 , 10 , x = 1 ( 1 ) 10 , 7S; Q n ( x ) for n = 0 ( 1 ) 2 , 10 , x = 2 ( 1 ) 10 , 8S. Corresponding values of the derivative of each function are also included, as are 6D values of the first 5 ν -zeros of 𝖯 ν m ( cos θ ) and of its derivative for m = 0 ( 1 ) 4 , θ = 10 , 30 , 150 .

  • Žurina and Karmazina (1964, 1965) tabulate the conical functions 𝖯 1 2 + i τ ( x ) for τ = 0 ( .01 ) 50 , x = 0.9 ( .1 ) 0.9 , 7S; P 1 2 + i τ ( x ) for τ = 0 ( .01 ) 50 , x = 1.1 ( .1 ) 2 ( .2 ) 5 ( .5 ) 10 ( 10 ) 60 , 7D. Auxiliary tables are included to facilitate computation for larger values of τ when 1 < x < 1 .

  • Žurina and Karmazina (1963) tabulates the conical functions 𝖯 1 2 + i τ 1 ( x ) for τ = 0 ( .01 ) 25 , x = 0.9 ( .1 ) 0.9 , 7S; P 1 2 + i τ 1 ( x ) for τ = 0 ( .01 ) 25 , x = 1.1 ( .1 ) 2 ( .2 ) 5 ( .5 ) 10 ( 10 ) 60 , 7S. Auxiliary tables are included to assist computation for larger values of τ when 1 < x < 1 .

  • For tables prior to 1961 see Fletcher et al. (1962) and Lebedev and Fedorova (1960).
    35: Bibliography P
  • V. I. Pagurova (1963) Tablitsy nepolnoi gamma-funktsii. Vyčisl. Centr Akad. Nauk SSSR, Moscow (Russian).
  • E. Pairman (1919) Tables of Digamma and Trigamma Functions. In Tracts for Computers, No. 1, K. Pearson (Ed.),
  • F. A. Paxton and J. E. Rollin (1959) Tables of the Incomplete Elliptic Integrals of the First and Third Kind. Technical report Curtiss-Wright Corp., Research Division, Quehanna, PA.
  • K. Pearson (Ed.) (1965) Tables of the Incomplete Γ -function. Biometrika Office, Cambridge University Press, Cambridge.
  • K. Pearson (Ed.) (1968) Tables of the Incomplete Beta-function. 2nd edition, Published for the Biometrika Trustees at the Cambridge University Press, Cambridge.
  • 36: Bibliography D
  • B. Davies (1973) Complex zeros of linear combinations of spherical Bessel functions and their derivatives. SIAM J. Math. Anal. 4 (1), pp. 128–133.
  • H. T. Davis (1933) Tables of Higher Mathematical Functions I. Principia Press, Bloomington, Indiana.
  • H. Delange (1991) Sur les zéros réels des polynômes de Bernoulli. Ann. Inst. Fourier (Grenoble) 41 (2), pp. 267–309 (French).
  • K. Dilcher (2008) On multiple zeros of Bernoulli polynomials. Acta Arith. 134 (2), pp. 149–155.
  • B. Döring (1966) Complex zeros of cylinder functions. Math. Comp. 20 (94), pp. 215–222.
  • 37: Bibliography S
  • J. Segura (1998) A global Newton method for the zeros of cylinder functions. Numer. Algorithms 18 (3-4), pp. 259–276.
  • J. Segura (2001) Bounds on differences of adjacent zeros of Bessel functions and iterative relations between consecutive zeros. Math. Comp. 70 (235), pp. 1205–1220.
  • I. M. Sheffer (1939) Some properties of polynomial sets of type zero. Duke Math. J. 5, pp. 590–622.
  • A. Stankiewicz (1968) Tables of the integro-exponential functions. Acta Astronom. 18, pp. 289–311.
  • J. Steinig (1970) The real zeros of Struve’s function. SIAM J. Math. Anal. 1 (3), pp. 365–375.
  • 38: Bibliography M
  • J. C. Mason and D. C. Handscomb (2003) Chebyshev Polynomials. Chapman & Hall/CRC, Boca Raton, FL.
  • R. C. McCann (1977) Inequalities for the zeros of Bessel functions. SIAM J. Math. Anal. 8 (1), pp. 166–170.
  • G. F. Miller (1960) Tables of Generalized Exponential Integrals. NPL Mathematical Tables, Vol. III, Her Majesty’s Stationery Office, London.
  • J. P. Mills (1926) Table of the ratio: Area to bounding ordinate, for any portion of normal curve. Biometrika 18, pp. 395–400.
  • L. M. Milne-Thomson (1950) Jacobian Elliptic Function Tables. Dover Publications Inc., New York.
  • 39: 5.2 Definitions
    5.2.1 Γ ( z ) = 0 e t t z 1 d t , z > 0 .
    It is a meromorphic function with no zeros, and with simple poles of residue ( 1 ) n / n ! at z = n . 1 / Γ ( z ) is entire, with simple zeros at z = n . …
    5.2.3 γ = lim n ( 1 + 1 2 + 1 3 + + 1 n ln n ) = 0.57721 56649 01532 86060 .
    40: 23.20 Mathematical Applications
    The curve C is made into an abelian group (Macdonald (1968, Chapter 5)) by defining the zero element o = ( 0 , 1 , 0 ) as the point at infinity, the negative of P = ( x , y ) by P = ( x , y ) , and generally P 1 + P 2 + P 3 = 0 on the curve iff the points P 1 , P 2 , P 3 are collinear. It follows from the addition formula (23.10.1) that the points P j = P ( z j ) , j = 1 , 2 , 3 , have zero sum iff z 1 + z 2 + z 3 𝕃 , so that addition of points on the curve C corresponds to addition of parameters z j on the torus / 𝕃 ; see McKean and Moll (1999, §§2.11, 2.14). … If any of these quantities is zero, then the point has finite order. … For extensive tables of elliptic curves see Cremona (1997, pp. 84–340). …