About the Project

solutions in terms of classical orthogonal polynomials


(0.003 seconds)

9 matching pages

1: 18.39 Physical Applications
§18.39(i) Quantum Mechanics
2: 18.40 Methods of Computation
Orthogonal polynomials can be computed from their explicit polynomial form by Horner’s scheme (§1.11(i)). Usually, however, other methods are more efficient, especially the numerical solution of difference equations (§3.6) and the application of uniform asymptotic expansions (when available) for OP’s of large degree. However, for applications in which the OP’s appear only as terms in series expansions (compare §18.18(i)) the need to compute them can be avoided altogether by use instead of Clenshaw’s algorithm (§3.11(ii)) and its straightforward generalization to OP’s other than Chebyshev. …
3: 18.38 Mathematical Applications
Differential Equations
Integrable Systems
Riemann–Hilbert Problems
Radon Transform
4: Bibliography M
  • I. G. Macdonald (2003) Affine Hecke Algebras and Orthogonal Polynomials. Cambridge Tracts in Mathematics, Vol. 157, Cambridge University Press, Cambridge.
  • A. P. Magnus (1995) Painlevé-type differential equations for the recurrence coefficients of semi-classical orthogonal polynomials. J. Comput. Appl. Math. 57 (1-2), pp. 215–237.
  • J. C. Mason (1993) Chebyshev polynomials of the second, third and fourth kinds in approximation, indefinite integration, and integral transforms. In Proceedings of the Seventh Spanish Symposium on Orthogonal Polynomials and Applications (VII SPOA) (Granada, 1991), Vol. 49, pp. 169–178.
  • T. Masuda (2004) Classical transcendental solutions of the Painlevé equations and their degeneration. Tohoku Math. J. (2) 56 (4), pp. 467–490.
  • Y. Murata (1995) Classical solutions of the third Painlevé equation. Nagoya Math. J. 139, pp. 37–65.
  • 5: Bibliography L
  • L. Lapointe and L. Vinet (1996) Exact operator solution of the Calogero-Sutherland model. Comm. Math. Phys. 178 (2), pp. 425–452.
  • D. A. Leonard (1982) Orthogonal polynomials, duality and association schemes. SIAM J. Math. Anal. 13 (4), pp. 656–663.
  • E. Levin and D. S. Lubinsky (2001) Orthogonal Polynomials for Exponential Weights. CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC, 4, Springer-Verlag, New York.
  • J. L. López and N. M. Temme (1999a) Approximation of orthogonal polynomials in terms of Hermite polynomials. Methods Appl. Anal. 6 (2), pp. 131–146.
  • J. L. López and N. M. Temme (1999c) Uniform approximations of Bernoulli and Euler polynomials in terms of hyperbolic functions. Stud. Appl. Math. 103 (3), pp. 241–258.
  • 6: Bibliography B
  • E. Bannai (1990) Orthogonal Polynomials in Coding Theory and Algebraic Combinatorics. In Orthogonal Polynomials (Columbus, OH, 1989), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., Vol. 294, pp. 25–53.
  • P. Baratella and L. Gatteschi (1988) The Bounds for the Error Term of an Asymptotic Approximation of Jacobi Polynomials. In Orthogonal Polynomials and Their Applications (Segovia, 1986), Lecture Notes in Math., Vol. 1329, pp. 203–221.
  • P. Barrucand and D. Dickinson (1968) On the Associated Legendre Polynomials. In Orthogonal Expansions and their Continuous Analogues (Proc. Conf., Edwardsville, Ill., 1967), pp. 43–50.
  • P. Bleher and A. Its (1999) Semiclassical asymptotics of orthogonal polynomials, Riemann-Hilbert problem, and universality in the matrix model. Ann. of Math. (2) 150 (1), pp. 185–266.
  • C. Brezinski (1980) Padé-type Approximation and General Orthogonal Polynomials. International Series of Numerical Mathematics, Vol. 50, Birkhäuser Verlag, Basel.
  • 7: Bibliography S
  • H. E. Salzer (1955) Orthogonal polynomials arising in the numerical evaluation of inverse Laplace transforms. Math. Tables Aids Comput. 9 (52), pp. 164–177.
  • T. Shiota (1986) Characterization of Jacobian varieties in terms of soliton equations. Invent. Math. 83 (2), pp. 333–382.
  • B. Simon (2005a) Orthogonal Polynomials on the Unit Circle. Part 1: Classical Theory. American Mathematical Society Colloquium Publications, Vol. 54, American Mathematical Society, Providence, RI.
  • B. Simon (2005b) Orthogonal Polynomials on the Unit Circle. Part 2: Spectral Theory. American Mathematical Society Colloquium Publications, Vol. 54, American Mathematical Society, Providence, RI.
  • G. Szegő (1967) Orthogonal Polynomials. 3rd edition, American Mathematical Society, New York.
  • 8: Bibliography K
  • E. G. Kalnins and W. Miller (1993) Orthogonal Polynomials on n -spheres: Gegenbauer, Jacobi and Heun. In Topics in Polynomials of One and Several Variables and their Applications, pp. 299–322.
  • R. Koekoek, P. A. Lesky, and R. F. Swarttouw (2010) Hypergeometric Orthogonal Polynomials and Their q -Analogues. Springer Monographs in Mathematics, Springer-Verlag, Berlin.
  • W. Koepf (1999) Orthogonal polynomials and computer algebra. In Recent developments in complex analysis and computer algebra (Newark, DE, 1997), R. P. Gilbert, J. Kajiwara, and Y. S. Xu (Eds.), Int. Soc. Anal. Appl. Comput., Vol. 4, Dordrecht, pp. 205–234.
  • T. H. Koornwinder (1975c) Two-variable Analogues of the Classical Orthogonal Polynomials. In Theory and Application of Special Functions, R. A. Askey (Ed.), pp. 435–495.
  • T. H. Koornwinder (2006) Lowering and Raising Operators for Some Special Orthogonal Polynomials. In Jack, Hall-Littlewood and Macdonald Polynomials, Contemp. Math., Vol. 417, pp. 227–238.
  • 9: Bibliography G
  • W. Gautschi (1994) Algorithm 726: ORTHPOL — a package of routines for generating orthogonal polynomials and Gauss-type quadrature rules. ACM Trans. Math. Software 20 (1), pp. 21–62.
  • W. Gautschi (1984) Questions of Numerical Condition Related to Polynomials. In Studies in Numerical Analysis, G. H. Golub (Ed.), pp. 140–177.
  • W. Gautschi (1992) On mean convergence of extended Lagrange interpolation. J. Comput. Appl. Math. 43 (1-2), pp. 19–35.
  • W. Gautschi (1996) Orthogonal Polynomials: Applications and Computation. In Acta Numerica, 1996, A. Iserles (Ed.), Acta Numerica, Vol. 5, pp. 45–119.
  • W. Gautschi (2004) Orthogonal Polynomials: Computation and Approximation. Numerical Mathematics and Scientific Computation, Oxford University Press, New York.