About the Project

sectorial%20harmonics

AdvancedHelp

(0.001 seconds)

21—30 of 122 matching pages

21: 29.18 Mathematical Applications
β–Ί
§29.18(iii) Spherical and Ellipsoidal Harmonics
22: 34.3 Basic Properties: 3 ⁒ j Symbol
β–Ί
§34.3(vii) Relations to Legendre Polynomials and Spherical Harmonics
β–ΊFor the polynomials P l see §18.3, and for the function Y l , m see §14.30. … β–Ί
34.3.20 Y l 1 , m 1 ⁑ ( ΞΈ , Ο• ) ⁒ Y l 2 , m 2 ⁑ ( ΞΈ , Ο• ) = l , m ( ( 2 ⁒ l 1 + 1 ) ⁒ ( 2 ⁒ l 2 + 1 ) ⁒ ( 2 ⁒ l + 1 ) 4 ⁒ Ο€ ) 1 2 ⁒ ( l 1 l 2 l m 1 m 2 m ) ⁒ Y l , m ⁑ ( ΞΈ , Ο• ) ¯ ⁒ ( l 1 l 2 l 0 0 0 ) ,
β–Ί
34.3.22 0 2 ⁒ Ο€ 0 Ο€ Y l 1 , m 1 ⁑ ( ΞΈ , Ο• ) ⁒ Y l 2 , m 2 ⁑ ( ΞΈ , Ο• ) ⁒ Y l 3 , m 3 ⁑ ( ΞΈ , Ο• ) ⁒ sin ⁑ ΞΈ ⁒ d ΞΈ ⁒ d Ο• = ( ( 2 ⁒ l 1 + 1 ) ⁒ ( 2 ⁒ l 2 + 1 ) ⁒ ( 2 ⁒ l 3 + 1 ) 4 ⁒ Ο€ ) 1 2 ⁒ ( l 1 l 2 l 3 0 0 0 ) ⁒ ( l 1 l 2 l 3 m 1 m 2 m 3 ) .
23: Bibliography B
β–Ί
  • G. Backenstoss (1970) Pionic atoms. Annual Review of Nuclear and Particle Science 20, pp. 467–508.
  • β–Ί
  • K. L. Bell and N. S. Scott (1980) Coulomb functions (negative energies). Comput. Phys. Comm. 20 (3), pp. 447–458.
  • β–Ί
  • W. G. Bickley (1935) Some solutions of the problem of forced convection. Philos. Mag. Series 7 20, pp. 322–343.
  • β–Ί
  • W. J. Braithwaite (1973) Associated Legendre polynomials, ordinary and modified spherical harmonics. Comput. Phys. Comm. 5 (5), pp. 390–394.
  • β–Ί
  • T. Busch, B. Englert, K. RzaΕΌewski, and M. Wilkens (1998) Two cold atoms in a harmonic trap. Found. Phys. 28 (4), pp. 549–559.
  • 24: 25.16 Mathematical Applications
    β–Ί
    25.16.5 H ⁑ ( s ) = n = 1 H n n s ,
    β–Ίwhere H n is given by (25.11.33). … β–Ί
    25.16.13 n = 1 ( H n n ) 2 = 17 4 ⁒ ΢ ⁑ ( 4 ) ,
    25: 36 Integrals with Coalescing Saddles
    26: GergΕ‘ Nemes
    β–ΊAs of September 20, 2021, Nemes performed a complete analysis and acted as main consultant for the update of the source citation and proof metadata for every formula in Chapter 25 Zeta and Related Functions. …
    27: Wolter Groenevelt
    β–ΊAs of September 20, 2022, Groenevelt performed a complete analysis and acted as main consultant for the update of the source citation and proof metadata for every formula in Chapter 18 Orthogonal Polynomials. …
    28: Bibliography D
    β–Ί
  • C. de la Vallée Poussin (1896a) Recherches analytiques sur la théorie des nombres premiers. Première partie. La fonction ΞΆ ⁒ ( s ) de Riemann et les nombres premiers en général, suivi d’un Appendice sur des réflexions applicables à une formule donnée par Riemann. Ann. Soc. Sci. Bruxelles 20, pp. 183–256 (French).
  • β–Ί
  • C. de la Vallée Poussin (1896b) Recherches analytiques sur la théorie des nombres premiers. Deuxième partie. Les fonctions de Dirichlet et les nombres premiers de la forme linéaire M ⁒ x + N . Ann. Soc. Sci. Bruxelles 20, pp. 281–397 (French).
  • β–Ί
  • P. Dean (1966) The constrained quantum mechanical harmonic oscillator. Proc. Cambridge Philos. Soc. 62, pp. 277–286.
  • β–Ί
  • B. Döring (1966) Complex zeros of cylinder functions. Math. Comp. 20 (94), pp. 215–222.
  • β–Ί
  • T. M. Dunster (1989) Uniform asymptotic expansions for Whittaker’s confluent hypergeometric functions. SIAM J. Math. Anal. 20 (3), pp. 744–760.
  • 29: 33.24 Tables
    β–Ί
  • Abramowitz and Stegun (1964, Chapter 14) tabulates F 0 ⁑ ( Ξ· , ρ ) , G 0 ⁑ ( Ξ· , ρ ) , F 0 ⁑ ( Ξ· , ρ ) , and G 0 ⁑ ( Ξ· , ρ ) for Ξ· = 0.5 ⁒ ( .5 ) ⁒ 20 and ρ = 1 ⁒ ( 1 ) ⁒ 20 , 5S; C 0 ⁑ ( Ξ· ) for Ξ· = 0 ⁒ ( .05 ) ⁒ 3 , 6S.

  • 30: 12.17 Physical Applications
    β–ΊDean (1966) describes the role of PCFs in quantum mechanical systems closely related to the one-dimensional harmonic oscillator. … β–ΊFor this topic and other boundary-value problems see Boyd (1973), Hillion (1997), Magnus (1941), Morse and Feshbach (1953a, b), Müller (1988), Ott (1985), Rice (1954), and Shanmugam (1978). β–ΊLastly, parabolic cylinder functions arise in the description of ultra cold atoms in harmonic trapping potentials; see Busch et al. (1998) and Edwards et al. (1999).