About the Project

representation theory

AdvancedHelp

(0.002 seconds)

11—20 of 31 matching pages

11: Bibliography E
  • G. P. Egorychev (1984) Integral Representation and the Computation of Combinatorial Sums. Translations of Mathematical Monographs, Vol. 59, American Mathematical Society, Providence, RI.
  • T. Estermann (1959) On the representations of a number as a sum of three squares. Proc. London Math. Soc. (3) 9, pp. 575–594.
  • W. N. Everitt (1982) On the transformation theory of ordinary second-order linear symmetric differential expressions. Czechoslovak Math. J. 32(107) (2), pp. 275–306.
  • W. N. Everitt (2005b) Charles Sturm and the development of Sturm-Liouville theory in the years 1900 to 1950. In Sturm-Liouville theory, pp. 45–74.
  • J. A. Ewell (1990) A new series representation for ζ ( 3 ) . Amer. Math. Monthly 97 (3), pp. 219–220.
  • 12: Bibliography R
  • M. Rahman (1981) A non-negative representation of the linearization coefficients of the product of Jacobi polynomials. Canad. J. Math. 33 (4), pp. 915–928.
  • W. H. Reid (1995) Integral representations for products of Airy functions. Z. Angew. Math. Phys. 46 (2), pp. 159–170.
  • B. Riemann (1851) Grundlagen für eine allgemeine Theorie der Functionen einer veränderlichen complexen Grösse. Inauguraldissertation, Göttingen.
  • K. H. Rosen (2004) Elementary Number Theory and its Applications. 5th edition, Addison-Wesley, Reading, MA.
  • G. Rota (1964) On the foundations of combinatorial theory. I. Theory of Möbius functions. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 2, pp. 340–368.
  • 13: 27.14 Unrestricted Partitions
    Euler’s pentagonal number theorem states that … and s ( h , k ) is a Dedekind sum given by … For example, the Ramanujan identity …
    §27.14(vi) Ramanujan’s Tau Function
    14: Bibliography Z
  • D. Zagier (1989) The Dilogarithm Function in Geometry and Number Theory. In Number Theory and Related Topics (Bombay, 1988), R. Askey and others (Eds.), Tata Inst. Fund. Res. Stud. Math., Vol. 12, pp. 231–249.
  • A. H. Zemanian (1987) Distribution Theory and Transform Analysis, An Introduction and Generalized Functions with Applications. Dover, New York.
  • A. Zhedanov (1998) On some classes of polynomials orthogonal on arcs of the unit circle connected with symmetric orthogonal polynomials on an interval. J. Approx. Theory 94 (1), pp. 73–106.
  • Q. Zheng (1997) Generalized Watson Transforms and Applications to Group Representations. Ph.D. Thesis, University of Vermont, Burlington,VT.
  • 15: Bibliography H
  • B. C. Hall (2013) Quantum theory for mathematicians. Graduate Texts in Mathematics, Vol. 267, Springer, New York.
  • B. Hall (2015) Lie groups, Lie algebras, and representations. Second edition, Graduate Texts in Mathematics, Vol. 222, Springer, Cham.
  • G. H. Hardy and E. M. Wright (1979) An Introduction to the Theory of Numbers. 5th edition, The Clarendon Press Oxford University Press, New York-Oxford.
  • T. Helgaker, P. Jørgensen, and J. Olsen (2012) Molecular Electronic-Structure Theory. John Wiley & Sons, New York.
  • E. W. Hobson (1931) The Theory of Spherical and Ellipsoidal Harmonics. Cambridge University Press, London-New York.
  • 16: Bibliography C
  • H. S. Carslaw (1930) Introduction to the Theory of Fourier’s Series and Integrals. 3rd edition, Macmillan, London.
  • S. Chandrasekhar (1984) The Mathematical Theory of Black Holes. In General Relativity and Gravitation (Padova, 1983), pp. 5–26.
  • E. W. Cheney (1982) Introduction to Approximation Theory. 2nd edition, Chelsea Publishing Co., New York.
  • E. A. Coddington and N. Levinson (1955) Theory of ordinary differential equations. McGraw-Hill Book Company, Inc., New York-Toronto-London.
  • H. Cohen (1993) A Course in Computational Algebraic Number Theory. Springer-Verlag, Berlin-New York.
  • 17: Bibliography
  • M. M. Agrest and M. S. Maksimov (1971) Theory of Incomplete Cylindrical Functions and Their Applications. Springer-Verlag, Berlin.
  • A. Apelblat (1991) Integral representation of Kelvin functions and their derivatives with respect to the order. Z. Angew. Math. Phys. 42 (5), pp. 708–714.
  • T. M. Apostol and I. Niven (1994) Number Theory. In The New Encyclopaedia Britannica, Vol. 25, pp. 14–37.
  • R. Askey and J. Fitch (1969) Integral representations for Jacobi polynomials and some applications. J. Math. Anal. Appl. 26 (2), pp. 411–437.
  • R. Askey (1974) Jacobi polynomials. I. New proofs of Koornwinder’s Laplace type integral representation and Bateman’s bilinear sum. SIAM J. Math. Anal. 5, pp. 119–124.
  • 18: Bibliography M
  • I. D. Macdonald (1968) The Theory of Groups. Clarendon Press, Oxford.
  • W. Magnus (1941) Zur Theorie des zylindrisch-parabolischen Spiegels. Z. Physik 118, pp. 343–356 (German).
  • P. Maroni (1995) An integral representation for the Bessel form. J. Comput. Appl. Math. 57 (1-2), pp. 251–260.
  • N. W. McLachlan (1934) Loud Speakers: Theory, Performance, Testing and Design. Oxford University Press, New York.
  • I. Mező (2020) An integral representation for the Lambert W function.
  • 19: 13.27 Mathematical Applications
    Confluent hypergeometric functions are connected with representations of the group of third-order triangular matrices. …Vilenkin (1968, Chapter 8) constructs irreducible representations of this group, in which the diagonal matrices correspond to operators of multiplication by an exponential function. … For applications of Whittaker functions to the uniform asymptotic theory of differential equations with a coalescing turning point and simple pole see §§2.8(vi) and 18.15(i). …
    20: Bibliography S
  • J. L. Schiff (1999) The Laplace Transform: Theory and Applications. Undergraduate Texts in Mathematics, Springer-Verlag, New York.
  • M. J. Seaton (1983) Quantum defect theory. Rep. Prog. Phys. 46 (2), pp. 167–257.
  • A. Sidi (2003) Practical Extrapolation Methods: Theory and Applications. Cambridge Monographs on Applied and Computational Mathematics, Vol. 10, Cambridge University Press, Cambridge.
  • C. L. Siegel (1935) Über die analytische Theorie der quadratischen Formen. Ann. of Math. (2) 36 (3), pp. 527–606.
  • B. Simon (1982) Large orders and summability of eigenvalue perturbation theory: A mathematical overview. Int. J. Quantum Chem. 21, pp. 3–25.