About the Project

relation to Kummer equation

AdvancedHelp

(0.005 seconds)

21—28 of 28 matching pages

21: 8.19 Generalized Exponential Integral
§8.19(i) Definition and Integral Representations
In Figures 8.19.28.19.5, height corresponds to the absolute value of the function and color to the phase. …
§8.19(v) Recurrence Relation and Derivatives
§8.19(vi) Relation to Confluent Hypergeometric Function
For U ( a , b , z ) see §13.2(i). …
22: Bibliography D
  • A. Deaño, J. Segura, and N. M. Temme (2010) Computational properties of three-term recurrence relations for Kummer functions. J. Comput. Appl. Math. 233 (6), pp. 1505–1510.
  • T. M. Dunster, D. A. Lutz, and R. Schäfke (1993) Convergent Liouville-Green expansions for second-order linear differential equations, with an application to Bessel functions. Proc. Roy. Soc. London Ser. A 440, pp. 37–54.
  • T. M. Dunster (1996a) Asymptotic solutions of second-order linear differential equations having almost coalescent turning points, with an application to the incomplete gamma function. Proc. Roy. Soc. London Ser. A 452, pp. 1331–1349.
  • T. M. Dunster (2001a) Convergent expansions for solutions of linear ordinary differential equations having a simple turning point, with an application to Bessel functions. Stud. Appl. Math. 107 (3), pp. 293–323.
  • T. M. Dunster (2014) Olver’s error bound methods applied to linear ordinary differential equations having a simple turning point. Anal. Appl. (Singap.) 12 (4), pp. 385–402.
  • 23: 9.6 Relations to Other Functions
    §9.6 Relations to Other Functions
    §9.6(i) Airy Functions as Bessel Functions, Hankel Functions, and Modified Bessel Functions
    §9.6(ii) Bessel Functions, Hankel Functions, and Modified Bessel Functions as Airy Functions
    §9.6(iii) Airy Functions as Confluent Hypergeometric Functions
    To express Airy functions in terms of hypergeometric functions combine §9.6(i) with (10.39.9).
    24: Bibliography
  • H. Airault, H. P. McKean, and J. Moser (1977) Rational and elliptic solutions of the Korteweg-de Vries equation and a related many-body problem. Comm. Pure Appl. Math. 30 (1), pp. 95–148.
  • G. Allasia and R. Besenghi (1991) Numerical evaluation of the Kummer function with complex argument by the trapezoidal rule. Rend. Sem. Mat. Univ. Politec. Torino 49 (3), pp. 315–327.
  • T. M. Apostol and T. H. Vu (1984) Dirichlet series related to the Riemann zeta function. J. Number Theory 19 (1), pp. 85–102.
  • F. M. Arscott (1964a) Integral equations and relations for Lamé functions. Quart. J. Math. Oxford Ser. (2) 15, pp. 103–115.
  • F. M. Arscott (1964b) Periodic Differential Equations. An Introduction to Mathieu, Lamé, and Allied Functions. International Series of Monographs in Pure and Applied Mathematics, Vol. 66, Pergamon Press, The Macmillan Co., New York.
  • 25: 18.17 Integrals
    For formulas for Jacobi and Laguerre polynomials analogous to (18.17.5) and (18.17.6), see Koornwinder (1974, 1977). … and three formulas similar to (18.17.9)–(18.17.11) by symmetry; compare the second row in Table 18.6.1. … For the beta function B ( a , b ) see §5.12, and for the confluent hypergeometric function F 1 1 see (16.2.1) and Chapter 13. … Many of the Fourier transforms given in §18.17(v) have analytic continuations to Laplace transforms. … For the confluent hypergeometric function F 1 1 see (16.2.1) and Chapter 13. …
    26: 12.14 The Function W ( a , x )
    This equation is important when a and z ( = x ) are real, and we shall assume this to be the case. …
    §12.14(vii) Relations to Other Functions
    Bessel Functions
    Confluent Hypergeometric Functions
    The differential equation
    27: 17.6 ϕ 1 2 Function
    Related formulas are (17.7.3), (17.8.8) and …
    Bailey–Daum q -Kummer Sum
    §17.6(iii) Contiguous Relations
    Heine’s Contiguous Relations
    q -Differential Equation
    28: Bibliography C
  • F. Calogero (1978) Asymptotic behaviour of the zeros of the (generalized) Laguerre polynomial L n α ( x )  as the index α  and limiting formula relating Laguerre polynomials of large index and large argument to Hermite polynomials. Lett. Nuovo Cimento (2) 23 (3), pp. 101–102.
  • B. C. Carlson (2006b) Table of integrals of squared Jacobian elliptic functions and reductions of related hypergeometric R -functions. Math. Comp. 75 (255), pp. 1309–1318.
  • C. Cerjan (Ed.) (1993) Numerical Grid Methods and Their Application to Schrödinger’s Equation. NATO Advanced Science Institutes Series C: Mathematical and Physical Sciences, Vol. 412, Kluwer Academic Publishers, Dordrecht.
  • J. Choi and A. K. Rathie (2013) An extension of a Kummer’s quadratic transformation formula with an application. Proc. Jangjeon Math. Soc. 16 (2), pp. 229–235.
  • W. J. Cody (1991) Performance evaluation of programs related to the real gamma function. ACM Trans. Math. Software 17 (1), pp. 46–54.