About the Project

product representation

AdvancedHelp

(0.004 seconds)

31—40 of 57 matching pages

31: 25.11 Hurwitz Zeta Function
25.11.37 k = 1 ( 1 ) k k ζ ( n k , a ) = n ln Γ ( a ) + ln ( j = 0 n 1 Γ ( a e ( 2 j + 1 ) π i / n ) ) , n = 2 , 3 , 4 , , a 1 .
32: 19.16 Definitions
19.16.2_5 R G ( x , y , z ) = 1 4 0 1 s ( t ) ( x t + x + y t + y + z t + z ) t d t .
19.16.7 3 2 0 d t j = 1 5 t + x j .
§19.16(ii) R a ( 𝐛 ; 𝐳 )
19.16.9 R a ( 𝐛 ; 𝐳 ) = 1 B ( a , a ) 0 t a 1 j = 1 n ( t + z j ) b j d t = 1 B ( a , a ) 0 t a 1 j = 1 n ( 1 + t z j ) b j d t , b 1 + + b n > a > 0 , b j , z j ( , 0 ] ,
For generalizations and further information, especially representation of the R -function as a Dirichlet average, see Carlson (1977b). …
33: 16.18 Special Cases
16.18.1 F q p ( a 1 , , a p b 1 , , b q ; z ) = ( k = 1 q Γ ( b k ) / k = 1 p Γ ( a k ) ) G p , q + 1 1 , p ( z ; 1 a 1 , , 1 a p 0 , 1 b 1 , , 1 b q ) = ( k = 1 q Γ ( b k ) / k = 1 p Γ ( a k ) ) G q + 1 , p p , 1 ( 1 z ; 1 , b 1 , , b q a 1 , , a p ) .
Representations of special functions in terms of the Meijer G -function are given in Erdélyi et al. (1953a, §5.6), Luke (1969a, §§6.4–6.5), and Mathai (1993, §3.10). …
34: 20.4 Values at z = 0
20.4.2 θ 1 ( 0 , q ) = 2 q 1 / 4 n = 1 ( 1 q 2 n ) 3 = 2 q 1 / 4 ( q 2 ; q 2 ) 3 ,
35: 1.18 Linear Second Order Differential Operators and Eigenfunction Expansions
A complex linear vector space V is called an inner product space if an inner product u , v is defined for all u , v V with the properties: (i) u , v is complex linear in u ; (ii) u , v = v , u ¯ ; (iii) v , v 0 ; (iv) if v , v = 0 then v = 0 . With norm defined by …Two elements u and v in V are orthogonal if u , v = 0 . … thus generalizing the inner product of (1.18.9). … The adjoint T of T does satisfy T f , g = f , T g where f , g = a b f ( x ) g ( x ) d x . …
36: 15.17 Mathematical Applications
§15.17(iii) Group Representations
In combinatorics, hypergeometric identities classify single sums of products of binomial coefficients. …
37: 16.5 Integral Representations and Integrals
§16.5 Integral Representations and Integrals
Then the integral converges when p < q + 1 provided that z 0 , or when p = q + 1 provided that 0 < | z | < 1 , and provides an integral representation of the left-hand side with these conditions. … In the case p = q the left-hand side of (16.5.1) is an entire function, and the right-hand side supplies an integral representation valid when | ph ( z ) | < π / 2 . … For further integral representations and integrals see Apelblat (1983, §16), Erdélyi et al. (1953a, §4.6), Erdélyi et al. (1954a, §§6.9 and 7.5), Luke (1969a, §3.6), and Prudnikov et al. (1990, §§2.22, 4.2.4, and 4.3.1). …
38: Bibliography
  • T. Agoh and K. Dilcher (2011) Integrals of products of Bernoulli polynomials. J. Math. Anal. Appl. 381 (1), pp. 10–16.
  • J. R. Albright (1977) Integrals of products of Airy functions. J. Phys. A 10 (4), pp. 485–490.
  • A. Apelblat (1991) Integral representation of Kelvin functions and their derivatives with respect to the order. Z. Angew. Math. Phys. 42 (5), pp. 708–714.
  • R. Askey and J. Fitch (1969) Integral representations for Jacobi polynomials and some applications. J. Math. Anal. Appl. 26 (2), pp. 411–437.
  • R. Askey (1974) Jacobi polynomials. I. New proofs of Koornwinder’s Laplace type integral representation and Bateman’s bilinear sum. SIAM J. Math. Anal. 5, pp. 119–124.
  • 39: 34.2 Definition: 3 j Symbol
    See Figure 34.2.1 for a schematic representation. …
    34.2.4 ( j 1 j 2 j 3 m 1 m 2 m 3 ) = ( 1 ) j 1 j 2 m 3 Δ ( j 1 j 2 j 3 ) ( ( j 1 + m 1 ) ! ( j 1 m 1 ) ! ( j 2 + m 2 ) ! ( j 2 m 2 ) ! ( j 3 + m 3 ) ! ( j 3 m 3 ) ! ) 1 2 s ( 1 ) s s ! ( j 1 + j 2 j 3 s ) ! ( j 1 m 1 s ) ! ( j 2 + m 2 s ) ! ( j 3 j 2 + m 1 + s ) ! ( j 3 j 1 m 2 + s ) ! ,
    34.2.5 Δ ( j 1 j 2 j 3 ) = ( ( j 1 + j 2 j 3 ) ! ( j 1 j 2 + j 3 ) ! ( j 1 + j 2 + j 3 ) ! ( j 1 + j 2 + j 3 + 1 ) ! ) 1 2 ,
    34.2.6 ( j 1 j 2 j 3 m 1 m 2 m 3 ) = ( 1 ) j 2 m 1 + m 3 ( j 1 + j 2 + m 3 ) ! ( j 2 + j 3 m 1 ) ! Δ ( j 1 j 2 j 3 ) ( j 1 + j 2 + j 3 + 1 ) ! ( ( j 1 + m 1 ) ! ( j 3 m 3 ) ! ( j 1 m 1 ) ! ( j 2 + m 2 ) ! ( j 2 m 2 ) ! ( j 3 + m 3 ) ! ) 1 2 F 2 3 ( j 1 j 2 j 3 1 , j 1 + m 1 , j 3 m 3 ; j 1 j 2 m 3 , j 2 j 3 + m 1 ; 1 ) ,
    where F 2 3 is defined as in §16.2. …
    40: 16.17 Definition
    Then the Meijer G -function is defined via the Mellin–Barnes integral representation:
    16.17.1 G p , q m , n ( z ; 𝐚 ; 𝐛 ) = G p , q m , n ( z ; a 1 , , a p b 1 , , b q ) = 1 2 π i L ( = 1 m Γ ( b s ) = 1 n Γ ( 1 a + s ) / ( = m q 1 Γ ( 1 b + 1 + s ) = n p 1 Γ ( a + 1 s ) ) ) z s d s ,
    Figure 16.17.1: s-plane. Path L for the integral representation (16.17.1) of the Meijer G -function.
    16.17.3 A p , q , k m , n ( z ) = = 1 k m Γ ( b b k ) = 1 n Γ ( 1 + b k a ) z b k / ( = m q 1 Γ ( 1 + b k b + 1 ) = n p 1 Γ ( a + 1 b k ) ) .