About the Project

phase

AdvancedHelp

(0.000 seconds)

21—30 of 187 matching pages

21: 6.12 Asymptotic Expansions
When | ph z | 1 2 π the remainder is bounded in magnitude by the first neglected term, and has the same sign when ph z = 0 . When 1 2 π | ph z | < π the remainder term is bounded in magnitude by csc ( | ph z | ) times the first neglected term. … When | ph z | 1 4 π , these remainders are bounded in magnitude by the first neglected terms in (6.12.3) and (6.12.4), respectively, and have the same signs as these terms when ph z = 0 . When 1 4 π | ph z | < 1 2 π the remainders are bounded in magnitude by csc ( 2 | ph z | ) times the first neglected terms. For other phase ranges use (6.4.6) and (6.4.7). …
22: 10.40 Asymptotic Expansions for Large Argument
Corresponding expansions for I ν ( z ) , K ν ( z ) , I ν ( z ) , and K ν ( z ) for other ranges of ph z are obtainable by combining (10.34.3), (10.34.4), (10.34.6), and their differentiated forms, with (10.40.2) and (10.40.4). … as z in | ph z | 1 2 π δ . … as z in | ph z | 3 2 π δ . …
23: 10.17 Asymptotic Expansions for Large Argument
10.17.3 J ν ( z ) ( 2 π z ) 1 2 ( cos ω k = 0 ( 1 ) k a 2 k ( ν ) z 2 k sin ω k = 0 ( 1 ) k a 2 k + 1 ( ν ) z 2 k + 1 ) , | ph z | π δ ,
10.17.7 z 1 2 = exp ( 1 2 ln | z | + 1 2 i ph z ) .
Corresponding expansions for other ranges of ph z can be obtained by combining (10.17.3), (10.17.5), (10.17.6) with the continuation formulas (10.11.1), (10.11.3), (10.11.4) (or (10.11.7), (10.11.8)), and also the connection formula given by the second of (10.4.4). …
10.17.15 𝒱 z , i ( t ) { | z | , 0 ph z π , χ ( ) | z | , 1 2 π ph z 0  or  π ph z 3 2 π , 2 χ ( ) | z | , π < ph z 1 2 π  or  3 2 π ph z < 2 π ,
10.17.18 R m , ± ( ν , z ) = O ( e 2 | z | z m ) , | ph ( z e 1 2 π i ) | π .
24: 12.5 Integral Representations
12.5.2 U ( a , z ) = z e 1 4 z 2 Γ ( 1 4 + 1 2 a ) 0 t 1 2 a 3 4 e t ( z 2 + 2 t ) 1 2 a 3 4 d t , | ph z | < 1 2 π , a > 1 2 ,
12.5.3 U ( a , z ) = e 1 4 z 2 Γ ( 3 4 + 1 2 a ) 0 t 1 2 a 1 4 e t ( z 2 + 2 t ) 1 2 a 1 4 d t , | ph z | < 1 2 π , a > 3 2 ,
12.5.5 U ( a , z ) = Γ ( 1 2 a ) 2 π i e 1 4 z 2 ( 0 + ) e z t 1 2 t 2 t a 1 2 d t , a 1 2 , 3 2 , 5 2 , , π < ph t < π .
12.5.6 U ( a , z ) = e 1 4 z 2 i 2 π c i c + i e z t + 1 2 t 2 t a 1 2 d t , 1 2 π < ph t < 1 2 π , c > 0 ,
12.5.7 V ( a , z ) = e 1 4 z 2 2 π ( i c i c + + i c i c + ) e z t 1 2 t 2 t a 1 2 d t , π < ph t < π , c > 0 .
25: 10.32 Integral Representations
10.32.10 K ν ( z ) = 1 2 ( 1 2 z ) ν 0 exp ( t z 2 4 t ) d t t ν + 1 , | ph z | < 1 4 π .
10.32.17 K μ ( z ) K ν ( z ) = 2 0 K μ ± ν ( 2 z cosh t ) cosh ( ( μ ν ) t ) d t , | ph z | < 1 2 π .
10.32.18 K ν ( z ) K ν ( ζ ) = 1 2 0 exp ( t 2 z 2 + ζ 2 2 t ) K ν ( z ζ t ) d t t , | ph z | < π , | ph ζ | < π , | ph ( z + ζ ) | < 1 4 π .
26: 10.54 Integral Representations
𝗁 n ( 2 ) ( z ) = ( i ) n + 1 π i ( 1 + ) e i z t Q n ( t ) d t , | ph z | < 1 2 π .
27: 13.4 Integral Representations
13.4.4 U ( a , b , z ) = 1 Γ ( a ) 0 e z t t a 1 ( 1 + t ) b a 1 d t , a > 0 , | ph z | < 1 2 π ,
13.4.5 U ( a , b , z ) = z 1 a Γ ( a ) Γ ( 1 + a b ) 0 U ( b a , b , t ) e t t a 1 t + z d t , | ph z | < π , a > max ( b 1 , 0 ) ,
13.4.13 𝐌 ( a , b , z ) = z 1 b 2 π i ( 0 + , 1 + ) e z t t b ( 1 1 t ) a d t , | ph z | < 1 2 π .
At this point the fractional powers are determined by ph t = π and ph ( 1 + t ) = 0 . …
28: 10.27 Connection Formulas
10.27.9 π i J ν ( z ) = e ν π i / 2 K ν ( z e π i / 2 ) e ν π i / 2 K ν ( z e π i / 2 ) , | ph z | 1 2 π .
10.27.10 π Y ν ( z ) = e ν π i / 2 K ν ( z e π i / 2 ) + e ν π i / 2 K ν ( z e π i / 2 ) , | ph z | 1 2 π .
10.27.11 Y ν ( z ) = e ± ( ν + 1 ) π i / 2 I ν ( z e π i / 2 ) ( 2 / π ) e ν π i / 2 K ν ( z e π i / 2 ) , 1 2 π ± ph z π .
29: 8.9 Continued Fractions
8.9.2 z a e z Γ ( a , z ) = z 1 1 + ( 1 a ) z 1 1 + z 1 1 + ( 2 a ) z 1 1 + 2 z 1 1 + ( 3 a ) z 1 1 + 3 z 1 1 + , | ph z | < π .
30: 9.7 Asymptotic Expansions
9.7.6 Ai ( z ) z 1 / 4 e ζ 2 π k = 0 ( 1 ) k v k ζ k , | ph z | π δ ,
9.7.17 { 1 , | ph z | 1 3 π , min ( | csc ( ph ζ ) | , χ ( n + σ ) + 1 ) , 1 3 π | ph z | 2 3 π , 2 π ( n + σ ) | cos ( ph ζ ) | n + σ + χ ( n + σ ) + 1 , 2 3 π | ph z | < π ,