About the Project

orders ±12

AdvancedHelp

(0.001 seconds)

21—30 of 67 matching pages

21: Bibliography C
  • L. Carlitz (1961a) A recurrence formula for ζ ( 2 n ) . Proc. Amer. Math. Soc. 12 (6), pp. 991–992.
  • R. D. Carlitz (1972) Hadronic matter at high density. Phys. Rev. D 5 (12), pp. 3231–3242.
  • A. D. Chave (1983) Numerical integration of related Hankel transforms by quadrature and continued fraction expansion. Geophysics 48 (12), pp. 1671–1686.
  • R. Cicchetti and A. Faraone (2004) Incomplete Hankel and modified Bessel functions: A class of special functions for electromagnetics. IEEE Trans. Antennas and Propagation 52 (12), pp. 3373–3389.
  • D. S. Clemm (1969) Algorithm 352: Characteristic values and associated solutions of Mathieu’s differential equation. Comm. ACM 12 (7), pp. 399–407.
  • 22: 2.8 Differential Equations with a Parameter
    For example, u can be the order of a Bessel function or degree of an orthogonal polynomial. …
    §2.8(iv) Case III: Simple Pole
    For error bounds, more delicate error estimates, extensions to complex ξ , ν , and u , zeros, and examples see Olver (1997b, Chapter 12), Boyd (1990a), and Dunster (1990a). … For a coalescing turning point and double pole see Boyd and Dunster (1986) and Dunster (1990b); in this case the uniform approximants are Bessel functions of variable order. … Lastly, for an example of a fourth-order differential equation, see Wong and Zhang (2007). …
    23: Bibliography K
  • M. K. Kerimov (1999) The Rayleigh function: Theory and computational methods. Zh. Vychisl. Mat. Mat. Fiz. 39 (12), pp. 1962–2006.
  • S. F. Khwaja and A. B. Olde Daalhuis (2013) Exponentially accurate uniform asymptotic approximations for integrals and Bleistein’s method revisited. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 469 (2153), pp. 20130008, 12.
  • M. Kodama (2008) Algorithm 877: A subroutine package for cylindrical functions of complex order and nonnegative argument. ACM Trans. Math. Software 34 (4), pp. Art. 22, 21.
  • G. C. Kokkorakis and J. A. Roumeliotis (1998) Electromagnetic eigenfrequencies in a spheroidal cavity (calculation by spheroidal eigenvectors). J. Electromagn. Waves Appl. 12 (12), pp. 1601–1624.
  • S. Kowalevski (1889) Sur le problème de la rotation d’un corps solide autour d’un point fixe. Acta Math. 12 (1), pp. 177–232 (French).
  • 24: Software Index
    25: 3.6 Linear Difference Equations
    Many special functions satisfy second-order recurrence relations, or difference equations, of the form …
    §3.6(vii) Linear Difference Equations of Other Orders
    Similar considerations apply to the first-order equation … For a difference equation of order k ( 3 ), …or for systems of k first-order inhomogeneous equations, boundary-value methods are the rule rather than the exception. …
    26: Bibliography T
  • J. G. Taylor (1978) Error bounds for the Liouville-Green approximation to initial-value problems. Z. Angew. Math. Mech. 58 (12), pp. 529–537.
  • N. M. Temme (1994c) Steepest descent paths for integrals defining the modified Bessel functions of imaginary order. Methods Appl. Anal. 1 (1), pp. 14–24.
  • E. C. Titchmarsh (1946) Eigenfunction Expansions Associated with Second-Order Differential Equations. Clarendon Press, Oxford.
  • T. Ton-That, K. I. Gross, D. St. P. Richards, and P. J. Sally (Eds.) (1995) Representation Theory and Harmonic Analysis. Contemporary Mathematics, Vol. 191, American Mathematical Society, Providence, RI.
  • F. Tu and Y. Yang (2013) Algebraic transformations of hypergeometric functions and automorphic forms on Shimura curves. Trans. Amer. Math. Soc. 365 (12), pp. 6697–6729.
  • 27: 27.13 Functions
    27.13.3 n = x 1 2 + x 2 2 + + x k 2 ,
    where the x j are integers, positive, negative, or zero, and the order of the summands is taken into account. … In fact, there are four representations, given by 5 = 2 2 + 1 2 = 2 2 + ( 1 ) 2 = ( 2 ) 2 + 1 2 = ( 2 ) 2 + ( 1 ) 2 , and four more with the order of summands reversed. … Explicit formulas for r k ( n ) have been obtained by similar methods for k = 6 , 8 , 10 , and 12 , but they are more complicated. …
    28: Bibliography I
  • Y. Ikebe, Y. Kikuchi, I. Fujishiro, N. Asai, K. Takanashi, and M. Harada (1993) The eigenvalue problem for infinite compact complex symmetric matrices with application to the numerical computation of complex zeros of J 0 ( z ) i J 1 ( z ) and of Bessel functions J m ( z ) of any real order m . Linear Algebra Appl. 194, pp. 35–70.
  • Y. Ikebe, Y. Kikuchi, and I. Fujishiro (1991) Computing zeros and orders of Bessel functions. J. Comput. Appl. Math. 38 (1-3), pp. 169–184.
  • M. Ikonomou, P. Köhler, and A. F. Jacob (1995) Computation of integrals over the half-line involving products of Bessel functions, with application to microwave transmission lines. Z. Angew. Math. Mech. 75 (12), pp. 917–926.
  • 29: 3.5 Quadrature
    3.5.1 a b f ( x ) d x = 1 2 h ( f ( a ) + f ( b ) ) 1 12 h 3 f ′′ ( ξ ) ,
    3.5.3 E n ( f ) = b a 12 h 2 f ′′ ( ξ ) , a < ξ < b .
    If k in (3.5.4) is not arbitrarily large, and if odd-order derivatives of f are known at the end points a and b , then the composite trapezoidal rule can be improved by means of the Euler–Maclaurin formula (§2.10(i)). … The Gauss nodes x k (the zeros of p n ) are the eigenvalues of the (symmetric tridiagonal) Jacobi matrix of order n × n : … With N function values, the Monte Carlo method aims at an error of order 1 / N , independently of the dimension of the domain of integration. …
    30: Bibliography R
  • Yu. L. Ratis and P. Fernández de Córdoba (1993) A code to calculate (high order) Bessel functions based on the continued fractions method. Comput. Phys. Comm. 76 (3), pp. 381–388.
  • J. T. Ratnanather, J. H. Kim, S. Zhang, A. M. J. Davis, and S. K. Lucas (2014) Algorithm 935: IIPBF, a MATLAB toolbox for infinite integral of products of two Bessel functions. ACM Trans. Math. Softw. 40 (2), pp. 14:1–14:12.
  • J. Raynal (1979) On the definition and properties of generalized 6 - j  symbols. J. Math. Phys. 20 (12), pp. 2398–2415.
  • S. R. Rengarajan and J. E. Lewis (1980) Mathieu functions of integral orders and real arguments. IEEE Trans. Microwave Theory Tech. 28 (3), pp. 276–277.
  • H. Rosengren (1999) Another proof of the triple sum formula for Wigner 9 j -symbols. J. Math. Phys. 40 (12), pp. 6689–6691.