About the Project

of the pth order

AdvancedHelp

(0.001 seconds)

31—40 of 269 matching pages

31: Bruce R. Miller
There, he carried out research in non-linear dynamics and celestial mechanics, developing a specialized computer algebra system for high-order Lie transformations. …
32: Richard B. Paris
His books are Asymptotics of High Order Differential Equations (with A. …
33: 10.1 Special Notation
m , n integers. In §§10.4710.71 n is nonnegative.
ν real or complex parameter (the order).
For the spherical Bessel functions and modified spherical Bessel functions the order n is a nonnegative integer. For the other functions when the order ν is replaced by n , it can be any integer. For the Kelvin functions the order ν is always assumed to be real. … For older notations see British Association for the Advancement of Science (1937, pp. xix–xx) and Watson (1944, Chapters 1–3).
34: 14.10 Recurrence Relations and Derivatives
14.10.1 𝖯 ν μ + 2 ( x ) + 2 ( μ + 1 ) x ( 1 x 2 ) 1 / 2 𝖯 ν μ + 1 ( x ) + ( ν μ ) ( ν + μ + 1 ) 𝖯 ν μ ( x ) = 0 ,
14.10.2 ( 1 x 2 ) 1 / 2 𝖯 ν μ + 1 ( x ) ( ν μ + 1 ) 𝖯 ν + 1 μ ( x ) + ( ν + μ + 1 ) x 𝖯 ν μ ( x ) = 0 ,
14.10.3 ( ν μ + 2 ) 𝖯 ν + 2 μ ( x ) ( 2 ν + 3 ) x 𝖯 ν + 1 μ ( x ) + ( ν + μ + 1 ) 𝖯 ν μ ( x ) = 0 ,
14.10.4 ( 1 x 2 ) d 𝖯 ν μ ( x ) d x = ( μ ν 1 ) 𝖯 ν + 1 μ ( x ) + ( ν + 1 ) x 𝖯 ν μ ( x ) ,
14.10.5 ( 1 x 2 ) d 𝖯 ν μ ( x ) d x = ( ν + μ ) 𝖯 ν 1 μ ( x ) ν x 𝖯 ν μ ( x ) .
35: 10.74 Methods of Computation
If values of the Bessel functions J ν ( z ) , Y ν ( z ) , or the other functions treated in this chapter, are needed for integer-spaced ranges of values of the order ν , then a simple and powerful procedure is provided by recurrence relations typified by the first of (10.6.1). … In the case of J n ( x ) , the need for initial values can be avoided by application of Olver’s algorithm (§3.6(v)) in conjunction with Equation (10.12.4) used as a normalizing condition, or in the case of noninteger orders, (10.23.15). …
§10.74(viii) Functions of Imaginary Order
For the computation of the functions I ~ ν ( x ) and K ~ ν ( x ) defined by (10.45.2) see Temme (1994c) and Gil et al. (2002d, 2003a, 2004b).
36: 36.11 Leading-Order Asymptotics
§36.11 Leading-Order Asymptotics
With real critical points (36.4.1) ordered so that …
36.11.5 Ψ 3 ( 0 , y , 0 ) = Ψ 3 ( 0 , y , 0 ) ¯ = exp ( 1 4 i π ) π / y ( 1 ( i / 3 ) exp ( 3 2 i ( 2 y / 5 ) 5 / 3 ) + o ( 1 ) ) , y + .
36.11.7 Ψ ( E ) ( 0 , 0 , z ) = π z ( i + 3 exp ( 4 27 i z 3 ) + o ( 1 ) ) , z ± ,
36.11.8 Ψ ( H ) ( 0 , 0 , z ) = 2 π z ( 1 i 3 exp ( 1 27 i z 3 ) + o ( 1 ) ) , z ± .
37: 19.27 Asymptotic Approximations and Expansions
19.27.2 R F ( x , y , z ) = 1 2 z ( ln 8 z a + g ) ( 1 + O ( a z ) ) , a / z 0 .
19.27.3 R F ( x , y , z ) = R F ( 0 , y , z ) 1 h ( x h + O ( x h ) ) , x / h 0 .
19.27.4 R G ( x , y , z ) = z 2 ( 1 + O ( a z ln z a ) ) , a / z 0 .
19.27.5 R G ( x , y , z ) = R G ( 0 , y , z ) + x O ( x / h ) , x / h 0 .
19.27.6 R G ( 0 , y , z ) = z 2 + y 8 z ( ln ( 16 z y ) 1 ) ( 1 + O ( y z ) ) , y / z 0 .
38: 11.10 Anger–Weber Functions
11.10.5 d 2 w d z 2 + 1 z d w d z + ( 1 ν 2 z 2 ) w = f ( ν , z ) ,
11.10.6 f ( ν , z ) = ( z ν ) π z 2 sin ( π ν ) , w = 𝐉 ν ( z ) ,
11.10.29 𝐉 n ( z ) = J n ( z ) , n .
11.10.34 2 𝐉 ν ( z ) = 𝐉 ν 1 ( z ) 𝐉 ν + 1 ( z ) ,
11.10.35 2 𝐄 ν ( z ) = 𝐄 ν 1 ( z ) 𝐄 ν + 1 ( z ) ,
39: Bibliography T
  • N. M. Temme (1994c) Steepest descent paths for integrals defining the modified Bessel functions of imaginary order. Methods Appl. Anal. 1 (1), pp. 14–24.
  • I. J. Thompson (2004) Erratum to “COULCC: A continued-fraction algorithm for Coulomb functions of complex order with complex arguments”. Comput. Phys. Comm. 159 (3), pp. 241–242.
  • E. C. Titchmarsh (1946) Eigenfunction Expansions Associated with Second-Order Differential Equations. Clarendon Press, Oxford.
  • E. C. Titchmarsh (1958) Eigenfunction Expansions Associated with Second Order Differential Equations, Part 2, Partial Differential Equations. Clarendon Press, Oxford.
  • E. C. Titchmarsh (1962a) Eigenfunction expansions associated with second-order differential equations. Part I. Second edition, Clarendon Press, Oxford.
  • 40: 10.20 Uniform Asymptotic Expansions for Large Order
    §10.20 Uniform Asymptotic Expansions for Large Order
    10.20.5 Y ν ( ν z ) ( 4 ζ 1 z 2 ) 1 4 ( Bi ( ν 2 3 ζ ) ν 1 3 k = 0 A k ( ζ ) ν 2 k + Bi ( ν 2 3 ζ ) ν 5 3 k = 0 B k ( ζ ) ν 2 k ) ,
    §10.20(iii) Double Asymptotic Properties
    For asymptotic properties of the expansions (10.20.4)–(10.20.6) with respect to large values of z see §10.41(v).